当前位置: X-MOL 学术Chemosphere › 论文详情
Real-time monitoring of forward osmosis membrane fouling in wastewater reuse process performed with a deep learning model
Chemosphere ( IF 5.778 ) Pub Date : 2021-02-22 , DOI: 10.1016/j.chemosphere.2021.130047
Sung Ju Im; Nguyen Duc Viet; Am Jang

Monitoring fouling behavior for better understanding and control has recently gained increasing attention. However, there is no practical method for observing membrane fouling in real time, especially in the forward osmosis (FO) process. In this article, we used the optical coherence tomography (OCT) technique to conduct real-time monitoring of the membrane fouling layer in the FO process. Fouling tendency of the FO membrane was observed at four distinguished stages for 21 days using a regular membrane cleaning method. In this method, chemical cleaning, which extracts two to three times as much organic matter (OM) as physical cleaning, was used as an effective method. Real-time OCT image observations indicated that a thin, dense, and flat fouling layer was formed (initial stage). On the other hand, a fouling layer with a thick and rough surface was formed later (final stage). A deep learning convolutional neural network model was developed to predict membrane fouling characteristics based on a dataset of real-time fouling images. The model results show a very high correlation between the predicted data and the actual data. R2 equals 0.90, 0.86, 0.92, and 0.90 for the thickness, porosity, roughness, and density of the fouling layer, respectively. As a promising approach, real-time monitoring of fouling layers on the surface of FO membranes and the prediction of fouling layer characteristics using deep learning models can characterize and control membrane fouling in FO and other membrane processes.



中文翻译:

使用深度学习模型对废水回用过程中正渗透膜结垢进行实时监控

监视结垢行为以更好地理解和控制近来已引起越来越多的关注。但是,没有实时观察膜污染的实用方法,尤其是在正向渗透(FO)过程中。在本文中,我们使用光学相干断层扫描(OCT)技术对FO过程中的膜污染层进行了实时监控。使用常规膜清洁方法,在四个不同的阶段观察到FO膜的结垢趋势,持续了21天。在这种方法中,化学清洗是一种有效的方法,化学清洗所提取的有机物(OM)数量是物理清洗的2至3倍。实时OCT图像观察表明,形成了一个薄,致密且平坦的结垢层(初始阶段)。另一方面,稍后形成具有厚且粗糙表面的结垢层(最终阶段)。开发了深度学习卷积神经网络模型,以基于实时污损图像数据集预测膜污损特征。模型结果表明,预测数据与实际数据之间具有很高的相关性。[R对于结垢层的厚度,孔隙率,粗糙度和密度,2分别等于0.90、0.86、0.92和0.90。作为一种有前途的方法,实时监控FO膜表面的结垢层并使用深度学习模型预测结垢层的特性可以表征和控制FO和其他膜工艺中的膜结垢。

更新日期:2021-02-26
全部期刊列表>>
牛年开工季
JCR Q1医学全学科
新春生命科学
新春医学
空气污染与健康
虚拟特刊
亚洲大洋洲地球科学
NPJ欢迎投稿
自然科研论文编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
上海中医药大学
南科大-连续三周2.26
西湖大学
化学所
北京大学
厦门大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
清华
南方科技大学
中国石油大学
天合科研
x-mol收录
试剂库存
down
wechat
bug