当前位置: X-MOL 学术Biochem. Moscow Suppl. Ser. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mathematical Modeling of Photosynthesis and Analysis of Plant Productivity
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Pub Date : 2021-02-21 , DOI: 10.1134/s1990747821010062
E. M. Sukhova , V. A. Vodeneev , V. S. Sukhov

Abstract

Photosynthesis is the basis of the plant production process, which makes it extremely relevant to develop methods for evaluating and predicting it under various environmental conditions. The complexity of photosynthetic processes and the presence of numerous feedbacks in it make it important to develop complex approaches to its analysis, including mathematical modeling. This review analyzes mathematical models of photosynthetic processes at various levels (from processes in thylakoid membranes up to the level of the whole plant and ecosystem) and assesses potential ways to use them to study plant productivity. First of all, models describing the functioning of photosynthetic reaction centers (including primary charge separation, fluorescence, heat dissipation, etc.) are noted; they are widely used for interpreting experimental data in the analysis of photosynthetic processes in plants. The next group of models focuses on the description of electron transport by a photosynthetic electron transport chain or its parts (in particular, photosystem II). Such models can be used both for analyzing experimental data and for predicting damage to the photosynthetic apparatus under conditions of rapid changes in environmental conditions (for example, fluctuations in light intensity). Models that take into account the dark stage of photosynthesis rely on the idea of limiting stages for CO2 fixation or on detailed descriptions of Calvin–Benson cycle reactions. Models of this group can already be directly used to describe the production process. More complex models, in addition to describing photosynthesis, can also take into account the propagation of light and CO2 fluxes in the leaf and the interaction of photosynthesis with other physiological processes; this makes it possible to use such models to predict plant productivity under different conditions or under modifications of the photosynthetic apparatus. The review also analyzes “supra-organismal” photosynthetic models, which are based on fairly simple descriptions of photosynthetic processes and can be used to analyze productivity at the level of vegetation cover, natural or artificial ecosystems. In general, numerous mathematical models of photosynthesis at various levels are aimed at solving a wide range of research and practical problems. In particular, they can be potentially used to assess violations of crop productivity in unstable growing conditions or to optimize it in stable protected ground conditions. A promising direction for the development of photosynthetic modeling is the integration of individual models of various levels into a single photosynthesis modeling environment.



中文翻译:

光合作用的数学模型和植物生产力分析

摘要

光合作用是植物生产过程的基础,这使其与开发在各种环境条件下进行评估和预测的方法极为相关。光合作用过程的复杂性以及其中存在大量反馈,因此开发复杂的分析方法(包括数学建模)非常重要。这篇综述分析了各种水平(从类囊体膜的过程到整个植物和生态系统的水平)光合作用过程的数学模型,并评估了使用它们研究植物生产力的潜在方法。首先,注意描述光合作用反应中心功能的模型(包括初级电荷分离,荧光,散热等);它们被广泛用于解释植物光合作用过程分析中的实验数据。下一组模型着重描述通过光合电子传输链或其部分(特别是光系统II)进行的电子传输。这样的模型既可以用于分析实验数据,又可以用于预测环境条件快速变化(例如,光强度的波动)条件下对光合装置的损坏。考虑到光合作用黑暗阶段的模型依赖于限制CO阶段的想法 这样的模型既可以用于分析实验数据,又可以用于预测环境条件快速变化(例如,光强度的波动)条件下对光合装置的损坏。考虑到光合作用黑暗阶段的模型依赖于限制CO阶段的想法 这样的模型既可以用于分析实验数据,又可以用于预测环境条件快速变化(例如,光强度的波动)条件下对光合装置的损坏。考虑到光合作用黑暗阶段的模型依赖于限制CO阶段的想法2固定或对Calvin-Benson循环反应的详细描述。该组的模型已经可以直接用于描述生产过程。除了描述光合作用以外,更复杂的模型还可以考虑光和CO 2的传播叶片中的通量以及光合作用与其他生理过程的相互作用;这使得可以使用这样的模型来预测在不同条件下或在光合作用设备的修改下的植物生产力。该评论还分析了“超有机”光合作用模型,该模型基于对光合作用过程的相当简单的描述,可用于分析植被覆盖,自然或人工生态系统水平的生产力。通常,许多不同水平的光合作用数学模型旨在解决广泛的研究和实际问题。特别是,它们可以潜在地用于评估在不稳定的生长条件下违反作物生产力的情况,或在稳定的受保护的地面条件下对其进行优化。

更新日期:2021-02-22
down
wechat
bug