当前位置:
X-MOL 学术
›
Eng. Comput.
›
论文详情
Fractal-fractional neuro-adaptive method for system identification
Engineering with Computers ( IF 3.938 ) Pub Date : 2021-02-22 , DOI: 10.1007/s00366-021-01314-w C. J. Zúñiga-Aguilar, J. F. Gómez-Aguilar, H. M. Romero-Ugalde, Hadi Jahanshahi, Fawaz E. Alsaadi
中文翻译:
分形神经自适应系统识别方法
更新日期:2021-02-22
Engineering with Computers ( IF 3.938 ) Pub Date : 2021-02-22 , DOI: 10.1007/s00366-021-01314-w C. J. Zúñiga-Aguilar, J. F. Gómez-Aguilar, H. M. Romero-Ugalde, Hadi Jahanshahi, Fawaz E. Alsaadi
Neuronal networks are used in different fields of science and technology due to their capacity to approximate nonlinear functions through the synaptic weights optimization. This work shows a new form of optimization for neuronal networks based in fractional calculus. The fractional adaptation algorithm proposed was used to identify mechanical, electrical and biological systems. In each of the experiments a comparison between the proposed fractal-fractional model and the conventional model (with derivation order equal to one) was made.
中文翻译:

分形神经自适应系统识别方法
由于神经元网络能够通过突触权重优化来近似非线性函数,因此它们被用于不同的科学和技术领域。这项工作显示了一种基于分数微积分的神经网络优化的新形式。提出的分数自适应算法用于识别机械,电气和生物系统。在每个实验中,对建议的分形模型与常规模型(推导阶数等于1)进行了比较。