当前位置: X-MOL 学术FEMS Microbiol. Ecol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Soil microbial communities influencing organic phosphorus mineralization in a coastal dune chronosequence in New Zealand
FEMS Microbiology Ecology ( IF 4.2 ) Pub Date : 2021-02-18 , DOI: 10.1093/femsec/fiab034
Jonathan R Gaiero 1 , Micaela Tosi 1 , Elizabeth Bent 1 , Gustavo Boitt 2 , Kamini Khosla 1 , Benjamin L Turner 3 , Alan E Richardson 4 , Leo M Condron 5 , Kari E Dunfield 1
Affiliation  

The Haast chronosequence in New Zealand is an ∼6500-year dune formation series, characterized by rapid podzol development, phosphorus (P) depletion and a decline in aboveground biomass. We examined bacterial and fungal community composition within mineral soil fractions using amplicon-based high-throughput sequencing (Illumina MiSeq). We targeted bacterial non-specific acid (class A, phoN/phoC) and alkaline (phoD) phosphomonoesterase genes and quantified specific genes and transcripts using real-time PCR. Soil bacterial diversity was greatest after 4000 years of ecosystem development and associated with an increased richness of phylotypes and a significant decline in previously dominant taxa (Firmicutes and Proteobacteria). Soil fungal communities transitioned from predominantly Basidiomycota to Ascomycota along the chronosequence and were most diverse in 290- to 392-year-old soils, coinciding with maximum tree basal area and organic P accumulation. The Bacteria:Fungi ratio decreased amid a competitive and interconnected soil community as determined by network analysis. Overall, soil microbial communities were associated with soil changes and declining P throughout pedogenesis and ecosystem succession. We identified an increased dependence on organic P mineralization, as found by the profiled acid phosphatase genes, soil acid phosphatase activity and function inference from predicted metagenomes (PICRUSt2).

中文翻译:

影响新西兰沿海沙丘时间序列中有机磷矿化的土壤微生物群落

新西兰的哈斯特时间序列是一个约 6500 年的沙丘形成系列,其特点是快速灰化,磷(P)消耗和地上生物量下降。我们使用基于扩增子的高通量测序 (Illumina MiSeq) 检查了矿质土壤组分中的细菌和真菌群落组成。我们针对细菌非特异性酸性(A 类,phoN/phoC)和碱性(phoD)磷酸单酯酶基因,并使用实时 PCR 对特定基因和转录物进行量化。在 4000 年的生态系统发展后,土壤细菌多样性最大,并且与系统型的丰富度增加和先前占主导地位的类群(Firmicutes 和 Proteobacteria)的显着下降有关。土壤真菌群落沿时间序列从主要的担子菌门过渡到子囊菌门,并且在 290 至 392 年历史的土壤中最为多样化,与最大树木基面积和有机磷积累相吻合。通过网络分析确定,在竞争性和相互关联的土壤群落中,细菌:真菌比率下降。总体而言,土壤微生物群落与整个成土过程和生态系统演替过程中的土壤变化和磷下降有关。我们通过分析酸性磷酸酶基因、土壤酸性磷酸酶活性和预测宏基因组(PICRUSt2)的功能推断发现了对有机磷矿化的依赖性增加。通过网络分析确定,在竞争和相互关联的土壤群落中,真菌比率下降。总体而言,土壤微生物群落与整个成土过程和生态系统演替过程中的土壤变化和磷下降有关。我们通过分析酸性磷酸酶基因、土壤酸性磷酸酶活性和预测宏基因组(PICRUSt2)的功能推断发现了对有机磷矿化的依赖性增加。通过网络分析确定,在竞争和相互关联的土壤群落中,真菌比率下降。总体而言,土壤微生物群落与整个成土过程和生态系统演替过程中的土壤变化和磷下降有关。我们通过分析酸性磷酸酶基因、土壤酸性磷酸酶活性和预测宏基因组(PICRUSt2)的功能推断发现了对有机磷矿化的依赖性增加。
更新日期:2021-02-18
down
wechat
bug