当前位置: X-MOL 学术J. Thermophys. Heat Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gas-Surface Energy Exchange Characterization Around a Cone in the Free-Piston-Driven Shock Tunnel
Journal of Thermophysics and Heat Transfer ( IF 2.1 ) Pub Date : 2021-02-21 , DOI: 10.2514/1.t6016
Sneh Deep 1 , Gopalan Jagadeesh 1
Affiliation  

This work describes numerical and experimental research in the Indian Hypersonic Shock Tunnel 3 on a blunt cone model and related computation of the facility parameters: nozzle reservoir conditions, nozzle transit time, and freestream conditions. Specialized codes accounting for real gas effects and nonequilibrium are used to obtain facility parameters. Starting at freestream conditions, a physicochemical model is developed in Fluent to simulate the dissociating environment within the shock layer over the model, assuming thermodynamic equilibrium. The model is validated, then invoked with a surface reaction of exothermic chromium oxidation, to study model erosion and gas-surface energy exchange. A mathematical analysis is performed to estimate surface oxidation rate, heat release, and its effect on shock layer temperature and aerodynamic heating. Both the quantities show considerable increase. Experimental measurement of surface heat flux and temperature using thin film gauges and two-color ratio pyrometry, respectively, also show an increase. The Fluent model with an iterative technique is used to show that the actual temperature at stagnation point is about 90 K higher than its counterpart based on line-of-sight averaged measurements. Finally, analytical calculations are performed to obtain the reaction rate parameter as a measure of the degree of dissociation in the shock layer.



中文翻译:

自由活塞驱动的冲击隧道中锥体周围的气体表面能量交换特征

这项工作描述了在印度高超音速冲击隧道3上的钝锥模型的数值和实验研究,以及设施参数的相关计算:喷嘴储层条件,喷嘴通过时间和自由流条件。考虑到实际气体影响和不平衡的专用代码用于获取设备参数。在自由流条件下开始,假设热力学平衡,在Fluent中开发了一个物理化学模型,以模拟模型上激波层内的离解环境。对该模型进行验证,然后通过放热铬氧化的表面反应调用该模型,以研究模型腐蚀和气体表面能量交换。进行数学分析以估计表面氧化速率,热量释放及其对冲击层温度和空气动力学加热的影响。两种数量均显示出相当大的增长。分别使用薄膜计和双色比高温计对表面热通量和温度进行的实验测量也有所增加。基于视线平均测量,使用迭代技术的Fluent模型显示出停滞点的实际温度比其停滞点的实际温度高约90K。最后,进行分析计算以获得反应速率参数,作为对冲击层解离程度的度量。基于视线平均测量,使用迭代技术的Fluent模型显示出停滞点的实际温度比其停滞点的实际温度高90K。最后,进行分析计算以获得反应速率参数,作为对冲击层解离程度的度量。基于视线平均测量,使用迭代技术的Fluent模型显示出停滞点的实际温度比其停滞点的实际温度高90K。最后,进行分析计算以获得反应速率参数,作为对冲击层解离程度的度量。

更新日期:2021-02-21
down
wechat
bug