当前位置: X-MOL 学术Remote Sens. Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Field spectroscopy of canopy nitrogen concentration in temperate grasslands using a convolutional neural network
Remote Sensing of Environment ( IF 13.5 ) Pub Date : 2021-02-20 , DOI: 10.1016/j.rse.2021.112353
R.R. Pullanagari , Mohammad Dehghan-Shoar , Ian J. Yule , N. Bhatia

As an essential feature of plant autotrophy, Nitrogen (N) is the major nutrient affecting plant growth in terrestrial ecosystems, thus is of not only fundamental scientific interest, but also a crucial factor in crop productivity. Timely non-destructive monitoring of canopy nitrogen concentration (N%) demands fast and highly accurate estimation, which is often quantified using spectroscopic analyses in the 400—2500 nm spectral region. However, extracting a set of useful spectral absorption features from canopy spectra to determine N% remains challenging due to confounding canopy architecture. Deep Learning as a statistical learning technique is useful to extract biochemical information from canopy spectra. We evaluated the performance of a one-dimensional convolutional neural network (1D-CNN) and compared it with two state-of-the-art methods: partial least squares regression (PLSR) and gaussian process regression (GPR). We utilized a large and diverse in-field multi-season (autumn, winter, spring and summer) spectral database (n = 7014) over 8 years (2009–2016) of dairy and hill country farms across New Zealand to develop season specific and spectral-region specific (VNIR and/or SWIR) 1D-CNN models. Results on the independent validation dataset (not used to train the model) showed that the 1D-CNN model provided higher accuracy (R2 = 0.72; nRMSE% = 14) than PLSR (R2 = 0.54; nRMSE% = 19) and GPR (with R2 = 0.62; nRMSE% = 16). Season specific models based on 1D-CNN indicated apparent differences (14 ≤ nRMSE ≤19 for the test dataset), while the performance of all seasons combined model was remained higher for the test dataset (nRMSE% = 14). The full spectral range model showed higher accuracy than the spectral region-specific models (VNIR and SWIR alone) (15.8 ≤ nRMSE ≤18.5). Additionally, predictions derived using 1D-CNN were more precise (less uncertain) with <0.12 mean standard deviation (uncertainty intervals) than PLSR (0.31) and GPR (0.16). This study demonstrated the potential of 1D-CNN as an alternative to conventional techniques to determine the N% from canopy hyperspectral spectra.



中文翻译:

利用卷积神经网络对温带草原冠层氮浓度进行实地光谱分析

氮(N)是植物自养的重要特征,是影响陆地生态系统植物生长的主要营养素,因此不仅具有根本的科学意义,而且还是作物生产力的关键因素。对冠层氮浓度(N%)进行及时的非破坏性监测需要快速且高度准确的估算,通常使用400-2500 nm光谱区域中的光谱分析法对其进行量化。但是,由于冠层结构混杂,从冠层光谱中提取一组有用的光谱吸收特征以确定N%仍然具有挑战性。深度学习是一种统计学习技术,可用于从冠层光谱中提取生化信息。我们评估了一维卷积神经网络(1D-CNN)的性能,并将其与两种最新方法进行了比较:偏最小二乘回归(PLSR)和高斯过程回归(GPR)。我们利用了一个大型且多样化的现场多季节(秋季,冬季,春季和夏季)光谱数据库(n  = 7014)在8年(2009-2016年)的整个新西兰范围内的奶牛场和山地农场,以开发特定季节和特定光谱区域(VNIR和/或SWIR)的1D-CNN模型。独立验证数据集(未用于训练模型)的结果表明,一维CNN模型提供的准确性(R 2  = 0.72; nRMSE%= 14)比PLSR(R 2  = 0.54; nRMSE%= 19)和GPR更高。 (带有R 2 = 0.62; nRMSE%= 16)。基于1D-CNN的特定季节模型显示出明显的差异(测试数据集为14≤nRMSE≤19),而测试数据集的所有季节组合模型的性能仍然更高(nRMSE%= 14)。全光谱范围模型显示出比特定光谱区域模型(仅VNIR和SWIR)更高的准确性(15.8≤nRMSE≤18.5)。此外,与PLSR(0.31)和GPR(0.16)相比,使用1D-CNN得出的预测更精确(不确定性更低),平均标准偏差(不确定区间)<0.12。这项研究证明了1D-CNN替代传统技术从冠层高光谱光谱中确定N%的潜力。

更新日期:2021-02-21
down
wechat
bug