当前位置: X-MOL 学术Int. J. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation on the mechanisms of cluster formation and transition from adsorption to condensation
International Journal of Heat and Mass Transfer ( IF 5.2 ) Pub Date : 2021-02-21 , DOI: 10.1016/j.ijheatmasstransfer.2021.121096
Chun-Mei Wu , Xiang Wei , You-Rong Li

In order to understand the mechanism of cluster formation and transition from adsorption to condensation, a series of theoretical analysis based on the Zeta adsorption model and molecular dynamics simulations are hybrid to study the transition process of argon atoms adsorption on a solid surface. The influence of solid-fluid interaction strength and temperature difference are discussed. Results show that the interfacial adsorption dominates the density profiles in the near wall region. With the increase of temperature difference, the enlarged chemical potential difference drives the transition from adsorption to condensation. The critical temperature differences for the transition are determined. The smaller value of solid-fluid interaction induces a larger condensation resistance, which results in a bigger value of critical temperature difference. Meanwhile, the cluster formation and transition process are theoretically described based on the Zeta adsorption model, without singularity at saturation pressure. The predicted adsorption sites show a good agreement with the molecular dynamics simulations. Once the pressure ratio exceeds a certain value, the adsorption sites are occupied by homogeneous clusters, which initiates the liquid phase to wet the surface. The wetting condition is determined. Also, in terms of Gibbs equation, the surface tension is lowered from the solid surface tension without adsorption to the value at wetting. The critical temperature difference for the transition obtained by theoretical prediction coincides well with the molecular dynamics simulation.



中文翻译:

团簇形成及从吸附到凝结转变机理的研究

为了理解团簇形成和从吸附到缩合转变的机理,结合了一系列基于Zeta吸附模型的理论分析和分子动力学模拟,研究了氩原子在固体表面吸附的转变过程。讨论了固液相互作用强度和温差的影响。结果表明,界面吸附在近壁区域的密度分布中占主导地位。随着温差的增加,增大的化学势差驱动从吸附到冷凝的转变。确定过渡的临界温度差。较小的固液相互作用值引起较大的抗冷凝性,这导致较大的临界温差值。同时,基于Zeta吸附模型从理论上描述了团簇的形成和转变过程,而在饱和压力下没有奇异点。预测的吸附位点与分子动力学模拟显示出良好的一致性。一旦压力比超过一定值,吸附位点就会被均质团簇占据,这会引发液相润湿表面。确定润湿条件。而且,根据吉布斯方程,表面张力从没有吸附的固体表面张力降低到润湿时的值。通过理论预测获得的转变的临界温差与分子动力学模拟非常吻合。理论上基于Zeta吸附模型描述了团簇的形成和过渡过程,在饱和压力下没有奇异点。预测的吸附位点与分子动力学模拟显示出良好的一致性。一旦压力比超过一定值,吸附位点就会被均质团簇占据,这会引发液相润湿表面。确定润湿条件。而且,根据吉布斯方程,表面张力从没有吸附的固体表面张力降低到润湿时的值。通过理论预测获得的转变的临界温差与分子动力学模拟非常吻合。理论上基于Zeta吸附模型描述了团簇的形成和转变过程,在饱和压力下没有奇异点。预测的吸附位点与分子动力学模拟显示出良好的一致性。一旦压力比超过一定值,吸附位点就会被均质团簇占据,这会引发液相润湿表面。确定润湿条件。而且,根据吉布斯方程,表面张力从没有吸附的固体表面张力降低到润湿时的值。通过理论预测获得的转变的临界温差与分子动力学模拟非常吻合。预测的吸附位点与分子动力学模拟显示出良好的一致性。一旦压力比超过一定值,吸附位点就会被均质团簇占据,这会引发液相润湿表面。确定润湿条件。而且,根据吉布斯方程,表面张力从没有吸附的固体表面张力降低到润湿时的值。通过理论预测获得的转变的临界温差与分子动力学模拟非常吻合。预测的吸附位点与分子动力学模拟显示出良好的一致性。一旦压力比超过一定值,吸附位点就会被均质团簇占据,这会引发液相润湿表面。确定润湿条件。而且,根据吉布斯方程,表面张力从没有吸附的固体表面张力降低到润湿时的值。通过理论预测获得的转变的临界温差与分子动力学模拟非常吻合。表面张力从没有吸附的固体表面张力降低到润湿时的值。通过理论预测获得的转变的临界温差与分子动力学模拟非常吻合。表面张力从没有吸附的固体表面张力降低到润湿时的值。通过理论预测获得的转变的临界温差与分子动力学模拟非常吻合。

更新日期:2021-02-21
down
wechat
bug