当前位置: X-MOL 学术J. Cosmol. Astropart. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gravitational Wave mergers as tracers of Large Scale Structures
Journal of Cosmology and Astroparticle Physics ( IF 6.4 ) Pub Date : 2021-02-18 , DOI: 10.1088/1475-7516/2021/02/035
S. Libanore 1, 2 , M. C. Artale 3 , D. Karagiannis 4 , M. Liguori 1, 2 , N. Bartolo 1, 2 , Y. Bouffanais 1, 2 , N. Giacobbo 1, 2 , M. Mapelli 1, 2, 5 , S. Matarrese 1, 2, 5, 6
Affiliation  

Clustering measurements of Gravitational Wave (GW) mergers in Luminosity Distance Space can be used in the future as a powerful tool for Cosmology. We consider tomographic measurements of the Angular Power Spectrum of mergers both in an Einstein Telescope-like detector network and in some more advanced scenarios (more sources, better distance measurements, better sky localization). We produce Fisher forecasts for both cosmological (matter and dark energy) and merger bias parameters. Our fiducial model for the number distribution and bias of GW events is based on results from hydrodynamical simulations. The cosmological parameter forecasts with Einstein Telescope are less powerful than those achievable in the near future via galaxy clustering observations with, e.g., Euclid. However, in the more advanced scenarios we see significant improvements. Moreover, we show that bias can be detected at high statistical significance. Regardless of the specific constraining power of different experiments, many aspects make this type of analysis interesting anyway. For example, compact binary mergers detected by Einstein Telescope will extend up to very high redshifts, particularly for binary black holes. Furthermore, Luminosity Distance Space Distortions in the GW analysis have a different structure with respect to Redshift-Space Distortions in galaxy catalogues. Finally, measurements of the bias of GW mergers can provide useful insight into their physical nature and properties.



中文翻译:

引力波合并作为大型结构的示踪剂

光度距离空间中引力波(GW)合并的聚类测量将来可以用作宇宙学的强大工具。我们考虑在类似爱因斯坦望远镜的探测器网络中以及在一些更高级的方案(更多的源,更好的距离测量,更好的天空定位)中对合并的角功率谱进行层析成像测量。我们针对宇宙学(物质和暗能量)和合并偏差参数生成Fisher预测。我们针对GW事件的数量分布和偏差的基准模型基于流体动力学模拟的结果。用爱因斯坦望远镜进行的宇宙学参数预测的能力不及在不久的将来通过例如Euclid的星系聚类观测所能实现的。但是,在更高级的方案中,我们看到了显着的改进。此外,我们表明可以在高度统计意义上检测到偏见。不管不同实验的具体约束力如何,无论如何,许多方面都使这种类型的分析变得有趣。例如,爱因斯坦望远镜检测到的紧凑的二进制合并将扩展到非常高的红移,尤其是对于二进制黑洞。此外,相对于星系目录中的红移-空间畸变,GW分析中的光度距离空间畸变具有不同的结构。最后,对GW合并偏差的度量可以提供有关其物理性质和性质的有用见解。爱因斯坦望远镜检测到的紧凑型二进制合并将扩展到非常高的红移,特别是对于二进制黑洞。此外,相对于星系目录中的红移-空间畸变,GW分析中的光度距离空间畸变具有不同的结构。最后,对GW合并偏差的度量可以提供有关其物理性质和性质的有用见解。爱因斯坦望远镜检测到的紧凑型二进制合并将扩展到非常高的红移,特别是对于二进制黑洞。此外,相对于星系目录中的红移-空间畸变,GW分析中的光度距离空间畸变具有不同的结构。最后,对GW合并偏差的度量可以提供有关其物理性质和性质的有用见解。

更新日期:2021-02-18
down
wechat
bug