当前位置: X-MOL 学术IEEE ASME Trans. Mechatron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pose Error Estimation Using a Cylinder in Scanner-Based Robotic Belt Grinding
IEEE/ASME Transactions on Mechatronics ( IF 6.4 ) Pub Date : 2020-11-16 , DOI: 10.1109/tmech.2020.3038237
He Xie 1 , Wen-long Li 1 , Cheng Jiang 1 , Da-hu Zhu 2 , Zhou-Ping Yin 1 , Han Ding 1
Affiliation  

Scanner-based robotic grinding has shown great potential for replacing the manual method to achieve efficient and automatic manufacturing. However, its application has been limited by the grinding quality, which is affected by the pose errors between the robot and other workcells (a scanner, a workpiece, and a tool). To improve the pose accuracy, this article proposes a novel estimation method for above three pose errors, where a cylinder is used as the calibration object. Using differential kinematics, the relationship between the hand-eye pose error and the reconstructed error is built. The hand-eye pose error is estimated by scanning and reconstructing a cylinder. An iterative method is presented to find the optimized orientation error vector, avoiding the uncertain error of multiple solutions using the Schmidt method. Based on the speed adjoint transformation, a mathematical model between the workpiece/tool pose errors and grinding error is built. Then, an experimental estimation approach for the workpiece/tool pose errors is presented by shape matching the measured points of the grinded cylinder with the design model. Unlike the traditional static construction method, this method uses large-scale measured points with high measurement accuracy to improve the estimation accuracy and stability and can estimate the pose error caused during the dynamic grinding process, such as vibration and force deformation. Finally, pose error estimation and compensation experiments are performed to verify the feasibility of the proposed method.

中文翻译:

基于扫描器的机器人皮带磨削中使用圆柱体的姿态误差估计

基于扫描仪的机器人磨削已显示出巨大的潜力,可以取代手动方法来实现高效且自动化的制造。但是,其应用受到磨削质量的限制,而磨削质量会受到机器人与其他工作单元(扫描仪,工件和工具)之间的姿态误差的影响。为了提高姿态精度,本文提出了一种新颖的估计上述三种姿态误差的方法,其中将圆柱体用作校准对象。使用微分运动学,建立了手眼姿态误差与重构误差之间的关系。通过扫描和重建圆柱体来估计手眼姿势误差。提出了一种迭代方法来找到优化的定向误差向量,从而避免了使用Schmidt方法的多个解决方案的不确定误差。基于速度伴随变换,建立了工件/刀具姿态误差与磨削误差之间的数学模型。然后,通过将磨削圆柱体的测量点与设计模型进行形状匹配,提出了一种针对工件/工具姿态误差的实验估算方法。与传统的静态构造方法不同,该方法使用具有高测量精度的大规模测量点来提高估计精度和稳定性,并且可以估计在动态磨削过程中引起的姿势误差,例如振动和力变形。最后,进行姿态误差估计和补偿实验,验证了该方法的可行性。通过将研磨圆柱体的测量点与设计模型进行形状匹配,提出了一种针对工件/工具姿态误差的实验估算方法。与传统的静态构造方法不同,该方法使用具有高测量精度的大规模测量点来提高估计精度和稳定性,并且可以估计在动态磨削过程中引起的姿势误差,例如振动和力变形。最后,进行姿态误差估计和补偿实验,验证了该方法的可行性。通过将研磨圆柱体的测量点与设计模型进行形状匹配,提出了一种针对工件/工具姿态误差的实验估算方法。与传统的静态构造方法不同,该方法使用具有高测量精度的大规模测量点来提高估计精度和稳定性,并且可以估计在动态磨削过程中引起的姿势误差,例如振动和力变形。最后,进行姿态误差估计和补偿实验,验证了该方法的可行性。该方法利用具有较高测量精度的大规模测量点来提高估计精度和稳定性,并且可以估计在动态磨削过程中引起的姿势误差,例如振动和力变形。最后,进行姿态误差估计和补偿实验,验证了该方法的可行性。该方法使用具有较高测量精度的大规模测量点来提高估计精度和稳定性,并且可以估计在动态磨削过程中引起的姿势误差,例如振动和力变形。最后,进行姿态误差估计和补偿实验,验证了该方法的可行性。
更新日期:2020-11-16
down
wechat
bug