当前位置: X-MOL 学术IEEE ASME Trans. Mechatron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonprehensile Manipulation:A Trajectory-Planning Perspective
IEEE/ASME Transactions on Mechatronics ( IF 6.4 ) Pub Date : 2020-11-17 , DOI: 10.1109/tmech.2020.3038591
Praneel Acharya , Kim Doang Nguyen , Hung Manh La , Dikai Liu , I-Ming Chen

This article discusses nonprehensile manipulation of an asymmetric object using a robotic manipulator from a motion planning point of view. Four different aspects of the problem will be analyzed:object stability, motion planning, manipulator control, and experimental validation. Specifically, via an analysis of marginal stability of an object resting on a moving tray, the work establishes the critical accelerations of the manipulator's end-effector, below which the object's stability is guaranteed. These critical accelerations guide the design of the end-effector's motion for successful nonprehensile manipulation of the object. In particular, we propose two methods to formulate polynomial asymmetric s-curve trajectories such that the end-effector completes its motion in minimum time. In one method, the trajectory is divided into segments whose time intervals are then computed via a recursive algorithm. In the other method, we formulate an optimization problem and design the minimum-time trajectory by balancing the tradeoff between the travel time and actuator effort. A series of experiments with a robotic arm is designed to validate and compare these motion planning methods in the context of nonprehensile manipulation. In addition, the experimental results demonstrate the advantages of the asymmetric s-curve motion profiles over the traditional symmetric s-curves.

中文翻译:

非全面操纵:轨迹规划的角度。

本文从运动计划的角度讨论了使用机器人操纵器对非对称对象进行的非精确操纵。将分析该问题的四个不同方面:对象稳定性,运动计划,机械手控制和实验验证。具体而言,通过分析放置在移动托盘上的物体的边际稳定性,这项工作确定了机械手末端执行器的临界加速度,在此之下,可以保证物体的稳定性。这些关键的加速度可指导末端执行器的运动设计,以成功地对物体进行非精确的操纵。特别是,我们提出了两种方法来构造多项式不对称s曲线轨迹,以使末端执行器在最短的时间内完成其运动。一种方法 轨迹被分为多个段,然后通过递归算法计算其时间间隔。在另一种方法中,我们通过平衡行程时间和执行器工作量之间的权衡,提出了一个优化问题并设计了最短时间轨迹。设计了一系列用机械臂进行的实验,以验证和比较这些运动计划方法在非精确操纵情况下的有效性。此外,实验结果证明了非对称s曲线运动轮廓优于传统对称s曲线的优势。设计了一系列用机械臂进行的实验,以验证和比较这些运动计划方法在非精确操纵情况下的有效性。此外,实验结果证明了非对称s曲线运动轮廓优于传统对称s曲线的优势。设计了一系列使用机械臂的实验,以验证和比较这些非运动操作环境下的运动计划方法。此外,实验结果证明了非对称s曲线运动轮廓优于传统对称s曲线的优势。
更新日期:2020-11-17
down
wechat
bug