当前位置: X-MOL 学术Environ. Pollut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In vivo and in silico evaluations of survival and cardiac developmental toxicity of quinolone antibiotics in zebrafish embryos (Danio rerio)
Environmental Pollution ( IF 8.9 ) Pub Date : 2021-02-19 , DOI: 10.1016/j.envpol.2021.116779
Ying Han , Yuanyuan Ma , Shangchen Yao , Jingpu Zhang , Changqin Hu

Quinolones are ranked as the second most commonly used class of antibiotics in China, despite their adverse clinical and environmental effects. However, information on their cardiac developmental toxicity to zebrafish is limited. This study investigates the relationships between different quinolone structures and toxicity in zebrafish embryos using in vivo and in silico methods. All of the experimentally tested quinolones show cardiac developmental toxicity potential and present mortality and teratogenic effects in a dose-dependent manner. Theoretically, the acute toxicity values predicted using quantitative structure−toxicity relationship (QSTR) modeling based on previously reported LC50 values are in good agreement with the in vivo results. Further investigation demonstrates that the hormetic concentration response of some quinolones may be related to methylation on the piperazine ring at the C-7 position. The amino group at the C-5 position, the methylated or ethylated piperazine group at the C-7 position, halogens at the C-8 position and a cyclopropyl ring at N1 position may be responsible for cardiac developmental toxicity. In terms of survival (key ecological endpoint), the naridine ring is more toxic than the quinoline ring. This combined approach can predict the acute and cardiac developmental toxicity of other quinolones and impurities.

更新日期:2021-02-26
down
wechat
bug