当前位置: X-MOL 学术Energy Build. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling method of an active–passive ventilation wall with latent heat storage for evaluating its thermal properties in the solar greenhouse
Energy and Buildings ( IF 6.7 ) Pub Date : 2021-02-19 , DOI: 10.1016/j.enbuild.2021.110840
Fengtao Han , Chao Chen , Qingling Hu , Yipeng He , Shen Wei , Caiyun Li

Active-passive phase change heat storage technologies have been obtained extensive application to decrease greenhouse’s demands for fossil energy during off-seasons. To develop the utilization ratio of solar energy in solar greenhouses during winter, the active–passive ventilation wall with latent heat storage (APVW-L) was introduced and could be integrated into greenhouse’s back-wall. However, system design and operation parameters are subjected to numerous factors, including its structure, material performance and outdoor meteorological parameters. To achieve optimization in the energy performance of this system, this study used finite element analysis and lumped parameter analysis to establish coupled energy balance equations of the APVW-L and the air inside vertical air passages, and the cubic spline interpolation was used to calculate the continuous relationship between phase change material’s equivalent specific heat capacity and temperature. This modeling method of the APVW-L was accurately validated against the measured data, and then used in the optimization design and operation strategy of the APVW-L in the greenhouses. This study demonstrated that the optimized APVW-L could store 5.36 MJ/(m2·day) of solar energy in Beijing. Compared to the identical conventional greenhouses, after midnight, the experimental greenhouse having APVW-L increased the back-wall’s interior surface temperature by 2.2–3.4 °C, and the average indoor air temperature by 0.8–1.4 °C. This study provides methods for the APVW-L's optimization design and its operation strategy, even for the rationalization of the near-zero energy consumption of the solar greenhouse during winter.

更新日期:2021-03-08
down
wechat
bug