当前位置: X-MOL 学术Int. J. Adv. Manuf. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploration of hardness variations for additive manufactured thin-walled components built by multi-axis tool paths
The International Journal of Advanced Manufacturing Technology ( IF 3.4 ) Pub Date : 2021-02-19 , DOI: 10.1007/s00170-021-06724-0
Hamed Kalami , Jill Urbanic

Using multi-axis tool paths in combination with a structured segmentation strategy introduces novel fabrication solutions for the direct energy deposition additive manufacturing process. However, with a piecemeal manufacturing strategy, interface regions are introduced. The goal of this research is to determine whether utilizing a multi-stage, multi-axis build strategy has an impact on the resulting hardness characteristics within the component. Surface roughness variations are noticeable when using a partitioning approach, so it is expected that hardness variations will result. The case studies consist of fabricating a set of thin wall (2 mm) hemispheres or domes. Two 45-mm nominal diameter domes are built using a wedge-based partitioning strategy. A 60-mm-diameter dome is fabricated using a rotary tool path approach. Various data collection strategies are investigated, and 300 gf or 1000 gf is recommended for the setup. It is found that the hardness across the bead thickness does not vary greatly at any point, but the hardness varies along the thin wall as the bead builds up. The interface zones have distinctly different hardness values, and the pattern is repeatable. Using fast Fourier transforms, the frequency of the noticeable surface roughness and hardness variation aligns to the interface boundary regions. This experiment illustrates that novel build solutions can be employed to eliminate the necessity of supports, but resolving a geometry issue may introduce physical and mechanical property variations within a component.



中文翻译:

探索通过多轴刀具路径制造的增材制造的薄壁部件的硬度变化

将多轴工具路径与结构化分割策略结合使用,可为直接能量沉积添加剂制造工艺引入新颖的制造解决方案。然而,采用零碎的制造策略,引入了界面区域。这项研究的目的是确定采用多阶段,多轴的构建策略是否会对部件内部的硬度特性产生影响。使用分隔方法时,表面粗糙度会明显变化,因此可以预期会导致硬度变化。案例研究包括制造一组薄壁(2毫米)的半球或半球形。使用基于楔形的分区策略构建了两个45毫米标称直径的圆顶。使用旋转工具路径方法制造了直径为60毫米的圆顶。研究了各种数据收集策略,建议设置300 gf或1000 gf。已经发现,在整个胎圈厚度上的硬度在任何时候都没有很大变化,但是随着胎圈的堆积,硬度沿着薄壁变化。界面区域具有明显不同的硬度值,并且图案是可重复的。使用快速傅立叶变换,明显的表面粗糙度和硬度变化的频率与界面边界区域对齐。该实验表明,可以采用新颖的构建解决方案来消除支撑的必要性,但是解决几何问题可能会在组件内引入物理和机械特性变化。已经发现,在整个胎圈厚度上的硬度在任何时候都没有很大变化,但是随着胎圈的堆积,硬度沿着薄壁变化。界面区域具有明显不同的硬度值,并且图案是可重复的。使用快速傅立叶变换,明显的表面粗糙度和硬度变化的频率与界面边界区域对齐。该实验表明,可以采用新颖的构建解决方案来消除支撑的必要性,但是解决几何问题可能会在组件内引入物理和机械特性变化。已经发现,在整个胎圈厚度上的硬度在任何时候都没有很大变化,但是随着胎圈的堆积,硬度沿着薄壁变化。界面区域具有明显不同的硬度值,并且图案是可重复的。使用快速傅立叶变换,明显的表面粗糙度和硬度变化的频率与界面边界区域对齐。该实验表明,可以采用新颖的构建解决方案来消除支撑的必要性,但是解决几何问题可能会在组件内引入物理和机械特性变化。明显的表面粗糙度和硬度变化的频率与界面边界区域对齐。该实验表明,可以采用新颖的构建解决方案来消除支撑的必要性,但是解决几何问题可能会在组件内引入物理和机械特性变化。明显的表面粗糙度和硬度变化的频率与界面边界区域对齐。该实验表明,可以采用新颖的构建解决方案来消除支撑的必要性,但是解决几何问题可能会在组件内引入物理和机械特性变化。

更新日期:2021-02-19
down
wechat
bug