当前位置: X-MOL 学术Calc. Var. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energy asymptotics in the three-dimensional Brezis–Nirenberg problem
Calculus of Variations and Partial Differential Equations ( IF 2.1 ) Pub Date : 2021-02-19 , DOI: 10.1007/s00526-021-01929-3
Rupert L. Frank , Tobias König , Hynek Kovařík

For a bounded open set \(\Omega \subset {\mathbb {R}}^3\) we consider the minimization problem

$$\begin{aligned} S(a+\epsilon V) = \inf _{0\not \equiv u\in H^1_0(\Omega )} \frac{\int _\Omega (|\nabla u|^2+ (a+\epsilon V) |u|^2)\,dx}{(\int _\Omega u^6\,dx)^{1/3}} \end{aligned}$$

involving the critical Sobolev exponent. The function a is assumed to be critical in the sense of Hebey and Vaugon. Under certain assumptions on a and V we compute the asymptotics of \(S(a+\epsilon V)-S\) as \(\epsilon \rightarrow 0+\), where S is the Sobolev constant. (Almost) minimizers concentrate at a point in the zero set of the Robin function corresponding to a and we determine the location of the concentration point within that set. We also show that our assumptions are almost necessary to have \(S(a+\epsilon V)<S\) for all sufficiently small \(\epsilon >0\).



中文翻译:

三维Brezis-Nirenberg问题中的能量渐近性

对于有界开放集\(\ Omega \ subset {\ mathbb {R}} ^ 3 \),我们考虑最小化问题

$$ \ begin {aligned} S(a + \ epsilon V)= \ inf _ {0 \ not \ equiv u \ in H ^ 1_0(\ Omega}} \ frac {\ int _ \ Omega(| \ nabla u | ^ 2+(a + \ epsilon V)| u | ^ 2)\,dx} {(\ int _ \ Omega u ^ 6 \,dx)^ {1/3}} \ end {aligned} $$

涉及关键的Sobolev指数。在赫比和沃贡的意义上,假设函数a是关键的。在aV的某些假设下,我们将\(S(a + \ epsilon V)-S \)的渐近性计算为\(\ epsilon \ rightarrow 0+ \),其中S是Sobolev常数。(几乎)最小化器集中在Robin函数的零集中对应于a的点,我们确定集中点在该集中的位置。我们还表明,对于所有足够小的\(\ epsilon> 0 \),具有\(S(a + \ epsilon V)<S \)几乎是必要的。

更新日期:2021-02-19
down
wechat
bug