当前位置: X-MOL 学术Eng. Appl. Comput. Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical investigation into the cavitating jet inside water poppet valves with varied valve seat structures
Engineering Applications of Computational Fluid Mechanics ( IF 6.1 ) Pub Date : 2021-02-17 , DOI: 10.1080/19942060.2021.1878060
Cong Yuan 1 , Lisha Zhu 1 , Zunling Du 1 , Shiqi Liu 2
Affiliation  

Owing to the strong three-dimensionality and transient evolution, the flow dynamics of a cavitating jet inside a water poppet valve is poorly understood, leading to insufficient basis for exploring the governing mechanism of cavitation effects. In this paper, a three-dimensional simulation considering the compressibility of each constituent phase is performed, to clarify the governing mechanisms under the cavitating flow inside two water poppet valves. The cavitation structures inside the poppet valves are primarily located at three regions and triggered by different mechanisms. The vortex cavitation, mainly confined within the free shearing layer, is due to vortex dynamics, while the attached cavitation at the poppet trailing edge and within the chamfered groove arises from flow separation. The fast laminar–turbulent transition process contributes to the three-dimensionality within the free shearing layer and the rear part of the chamfered groove. The flow separation due to the chamfered groove leads to increased velocity of the central potential core, contributing to a different flow discharge performance from that of the poppet valves with a sharp seat. In addition, the periodic variation in cavitation reveals the significant interaction between the shed cavitating vortex and attached cavitation at the poppet trailing edge. In conclusion, the change in velocity distribution due to different poppet valve seat structures leads to variation in flow discharge performance, and the vortex dynamics makes sense for all three kinds of cavitation occurring inside poppet valves.



中文翻译:

阀座结构不同的提升阀内部空化射流的数值研究

由于强大的三维性和瞬态演化,人们对水阀内部的空化射流的流动动力学知之甚少,从而导致不足的基础来研究空化效应的调控机理。在本文中,考虑了每个组成相的可压缩性,进行了三维模拟,以阐明在两个水提升阀内部的空化流作用下的控制机制。提升阀内部的气蚀结构主要位于三个区域,并由不同的机构触发。涡流空化主要限制在自由剪切层内,这是由于涡流动力学引起的,而在提动头后缘和斜切槽内的附着空化是由流动分离引起的。快速的层流-湍流过渡过程有助于自由剪切层和倒角凹槽的后部内的三维化。由于斜切凹槽而导致的流量分离导致中央电位铁心的速度增加,从而导致其流量释放性能不同于带有尖锐阀座的提升阀的流量释放性能。此外,空化的周期性变化揭示了脱落的空化涡流与提升锥尾缘处的附着空化之间的显着相互作用。总之,由于提升阀阀座结构不同而导致的速度分布变化导致流量排放性能发生变化,并且涡流动力学对于提升阀内部发生的所有三种空化现象都是有意义的。

更新日期:2021-02-18
down
wechat
bug