当前位置: X-MOL 学术Near Surf. Geophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
4D quantification of alpine permafrost degradation in steep rock walls using a laboratory‐calibrated electrical resistivity tomography approach
Near Surface Geophysics ( IF 1.6 ) Pub Date : 2021-02-17 , DOI: 10.1002/nsg.12149
Riccardo Scandroglio 1 , Daniel Draebing 2, 3 , Maike Offer 1 , Michael Krautblatter 1
Affiliation  

The warming of rock permafrost affects mechanical stability and hydro‐cryostatic pressures in rock walls. The coincident decrease in slope stability frequently affects infrastructure by creep and subsidence and promotes the generation of rockfalls and rockslides. The increasing hazard posed by warming permafrost rock walls and the growing exposure of infrastructure and individuals create a demand for quantitative monitoring methods. Laboratory‐calibrated electrical resistivity tomography provides a sensitive record for frozen versus unfrozen bedrock, presumably being the most accurate quantitative monitoring technique in permafrost areas where boreholes are not available. The data presented here are obtained at the permafrost‐affected and unstable Steintaelli Ridge at 3100 m a.s.l. and allow the quantification of permafrost changes in the longest electrical resistivity tomography time series in steep bedrock. Five parallel transects across the rock ridge have been measured five times each, between 2006 and 2019, with similar hardware. Field measurements were calibrated using temperature‐resistivity laboratory measurements of water‐saturated rock samples from the site. A 3D time‐lapse inversion scheme is applied in the boundless electrical resistivity tomography (BERT) software for the inversion of the data. To assess the initial data quality, we compare the effect of data filtering and the robustness of final results with three different filters and two time‐lapse models. We quantify the volumetric permafrost distribution in the bedrock and its degradation in the last decades. Our data show mean monthly air temperatures to increase from −3.4°C to −2.6°C between 2005‒2009 and 2015‒2019, respectively, while simultaneously permafrost volume degraded on average from 6790 m3 (±640 m3 rock in phase‐transition range) in 2006 to 3880 m3 (±1000 m3) in 2019. For the first time, we provide a quantitative measure of permafrost degradation in unstable bedrock by using a temperature‐calibrated 4D electrical resistivity tomography. Our approach represents a fundamental benchmark for the evaluation of climate change effects on bedrock permafrost.

中文翻译:

使用实验室校准的电阻层析成像方法对陡峭岩壁中的高山多年冻土退化进行4D量化

岩石多年冻土的变暖会影响岩壁的机械稳定性和静水压力。边坡稳定性的同时下降经常通过蠕变和沉降影响基础设施,并促进崩塌和滑坡的产生。多年冻土岩墙变暖带来的危害不断增加,基础设施和个人的暴露日益增加,因此对定量监测方法提出了要求。实验室校准的电阻层析成像技术可提供相对于冻结基岩还是未冻结基岩的灵敏记录,据推测是在没有钻孔的多年冻土地区最准确的定量监测技术。此处提供的数据是在3100 m asl处受多年冻土影响且不稳定的Steintaelli Ridge处获得的 并允许量化陡峭基岩中最长的电阻率层析成像时间序列中的多年冻土变化。在2006年至2019年之间,使用类似的硬件对整个岩脊上的五个平行样线进行了五次测量。现场测量是使用温度电阻率实验室对来自现场的水饱和岩石样品进行的测量来校准的。3D延时反演方案已应用于无限电阻层析成像(BERT)软件中,用于数据反演。为了评估初始数据质量,我们将数据过滤的效果和最终结果的鲁棒性与三个不同的过滤器和两个时移模型进行了比较。我们量化了基岩中多年冻土的体积分布及其在最近几十年的退化。3(±640米3中的相转变范围岩)在2006年3880米3(±千米3在2019年)第一次,我们通过使用提供不稳定基岩冻土退化的定量测量的温度校准的4D电阻层析成像。我们的方法代表了评估气候变化对基岩多年冻土影响的基本基准。
更新日期:2021-04-19
down
wechat
bug