当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Femtosecond laser drilled micro-hole arrays in thick and dense 2D nanomaterial electrodes toward high volumetric capacity and rate performance
Journal of Power Sources ( IF 9.2 ) Pub Date : 2021-02-18 , DOI: 10.1016/j.jpowsour.2021.229638
Chunyang Xu , Qiang Li , Qizhao Wang , Xuandong Kou , Hai-Tao Fang , Lijun Yang

Two dimensional (2D) nanomaterials have great application potential in developing the energy storage systems with high volumetric energy and power densities. However, due to the sluggish ion diffusion, achieving both high volumetric capacities and rate performance in thick and dense 2D nanomaterial electrodes is still challenging. Here, we report a femtosecond laser drilling method to introduce appropriate micro-hole arrays into the thick and dense electrodes for facilitated ion transport. These micro-hole arrays shorten ion transport paths and thus significantly reduce the ion transport resistance. More importantly, constructing micro-hole arrays with hole spacing higher than 40 μm rarely sacrifices the density of the electrode. The effectiveness of micro-hole arrays to improve capacities and rate performance of the thick and dense electrodes is evidenced by two model cases: a TiO2-based electrode constructed with the upper-layer TiO2-coated graphene hybrids and under-layer graphene (dTiO2-G/G), and a graphene electrode. As presented, the micro-hole array with a hole spacing of 40 μm decreases the ionic resistance of the dTiO2-G/G electrode, and consequently improves the volumetric capacity at 10C from 15.8 to 97 mA h cm−3. Such micro-hole array also improves the volumetric capacity and rate performance of the graphene electrode.



中文翻译:

飞秒激光在厚而致密的二维纳米材料电极中钻出微孔阵列,以实现高容量和倍率性能

二维(2D)纳米材料在开发具有高体积能量和功率密度的储能系统中具有巨大的应用潜力。然而,由于缓慢的离子扩散,在厚且致密的2D纳米材料电极中实现高体积容量和倍率性能仍是挑战。在这里,我们报告了飞秒激光钻孔方法,可以将适当的微孔阵列引入厚而致密的电极中,以促进离子传输。这些微孔阵列缩短了离子传输路径,从而大大降低了离子传输阻力。更重要的是,构建孔间距大于40μm的微孔阵列很少会牺牲电极的密度。由上层TiO 2涂覆的石墨烯杂化物和下层石墨烯(dTiO 2 -G / G)构成的基于2-的电极和石墨烯电极。如所呈现的,具有40μm的孔间距的微孔阵列降低了dTiO 2 -G / G电极的离子电阻,并且因此将10℃下的体积容量从15.8提高到97mA h cm -3。这种微孔阵列还改善了石墨烯电极的体积容量和倍率性能。

更新日期:2021-02-18
down
wechat
bug