当前位置: X-MOL 学术J. Non-Newtonian Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational interfacial rheology
Journal of Non-Newtonian Fluid Mechanics ( IF 3.1 ) Pub Date : 2021-02-18 , DOI: 10.1016/j.jnnfm.2021.104507
Nick O. Jaensson , Patrick D. Anderson , Jan Vermant

Fluid–fluid interfaces, laden with polymers, particles or other surface-active moieties, often show a rheologically complex response to deformations, in particular when strong lateral interactions are present between these moieties. The response of the interface can then no longer be described by an isotropic surface tension alone. These “structured” soft-matter interfaces are found in many industrial applications, ranging from foods, cosmetics and pharmaceuticals, to oil recovery. Also many biomedical applications involve such interfaces, including those involving lung surfactants and biofilms. In order to understand, design and optimize processes in which structured interfaces are present, flow predictions of how such multiphase systems deform are of the utmost importance, which is the goal of “computational interfacial rheology”, the main topic of this review. We start by rigorously establishing the stress boundary condition used in the computation of multi-phase flows, and show how this changes when the interface is rheologically complex. Then, constitutive models for the extra stress in interfaces, ranging from 2D generalized Newtonian to hyperelastic and viscoelastic, are reviewed extensively, including common pitfalls when applying these models. This is followed by an overview of different approaches to measure interfacial rheological properties, and a discussion of advanced numerical implementations for deforming interfaces. We conclude with an outlook for this relatively young and exciting field.



中文翻译:

计算界面流变学

充满聚合物,颗粒或其他表面活性部分的流体-流体界面通常表现出对形变的流变复杂响应,尤其是当这些部分之间存在强烈的侧向相互作用时。这样,界面的响应就不再仅由各向同性的表面张力来描述。这些“结构化”的软物质界面可在许多工业应用中找到,从食品,化妆品和药品到采油。同样,许多生物医学应用都涉及此类界面,包括涉及肺表面活性剂和生物膜的界面。为了理解,设计和优化存在结构化界面的过程,最重要的是预测此类多相系统如何变形的流动,这是“计算界面流变学”的目标,这次审查的主题。我们首先严格建立用于计算多相流的应力边界条件,并说明当界面流变复杂时,应力边界条件如何变化。然后,广泛地研究了界面上的额外应力的本构模型,范围从2D广义牛顿到超弹性和粘弹性,包括应用这些模型时的常见陷阱。接下来是对测量界面流变特性的不同方法的概述,并讨论了用于变形界面的高级数值实现方法。最后,我们对这个相对年轻而令人兴奋的领域进行了展望。并说明当界面流变复杂时,这种变化是如何变化的。然后,广泛地研究了界面上的额外应力的本构模型,范围从2D广义牛顿到超弹性和粘弹性,包括应用这些模型时的常见陷阱。接下来是对测量界面流变特性的不同方法的概述,并讨论了用于变形界面的高级数值实现方法。最后,我们对这个相对年轻而令人兴奋的领域进行了展望。并说明当界面流变复杂时,这种变化是如何变化的。然后,广泛地研究了界面上的额外应力的本构模型,范围从2D广义牛顿到超弹性和粘弹性,包括应用这些模型时的常见陷阱。接下来是对测量界面流变特性的不同方法的概述,并讨论了用于变形界面的高级数值实现方法。最后,我们对这个相对年轻而令人兴奋的领域进行了展望。接下来是对测量界面流变特性的不同方法的概述,并讨论了用于变形界面的高级数值实现方法。最后,我们对这个相对年轻而令人兴奋的领域进行了展望。接下来是对测量界面流变特性的不同方法的概述,并讨论了用于变形界面的高级数值实现方法。最后,我们对这个相对年轻而令人兴奋的领域进行了展望。

更新日期:2021-02-25
down
wechat
bug