当前位置: X-MOL 学术Functional Composite Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-material braids for multifunctional laminates: conductive through-thickness reinforcement
Functional Composite Materials Pub Date : 2021-02-17 , DOI: 10.1186/s42252-021-00018-0
Caroline O’Keeffe , Laura Rhian Pickard , Juan Cao , Giuliano Allegri , Ivana K. Partridge , Dmitry S. Ivanov

Conventional carbon fibre laminates are known to be moderately electrically conductive in-plane, but have a poor through-thickness conductivity. This poses a problem for functionality aspects that are of increasing importance to industry, such as sensing, current collection, inductive/resistive heating, electromagnetic interference (EMI) shielding, etc. This restriction is of course more pronounced for non-conductive composite reinforcements such as glass, organic or natural fibres. Among various solutions to boost through-thickness electrical conductivity, tufting with hybrid micro-braided metal-carbon fibre yarns is one of the most promising. As a well-characterised method of through thickness reinforcement, tufting is easily implementable in a manufacturing environment. The hybridisation of materials in the braid promotes the resilience and integrity of yarns, while integrating metal wires opens up a wide range of multifunctional applications. Many configurations can be produced by varying braid patterns and the constituting yarns/wires. A predictive design tool is therefore necessary to select the right material configuration for the desired functional and structural performance. This paper suggests a fast and robust method for generating finite-element models of the braids, validates the prediction of micro-architecture and electrical conductivity, and demonstrates successful manufacturing of composites enhanced with braided tufts.

中文翻译:

多功能层压板的多材料编织层:导电性全厚度增强

已知常规的碳纤维层压板在平面内具有适度的导电性,但是具有较差的贯穿厚度导电性。这给工业上日益重要的功能性方面带来了问题,例如感测,电流收集,感应/电阻加热,电磁干扰(EMI)屏蔽等。对于非导电复合增强材料,这种限制当然更加明显。如玻璃,有机或天然纤维。在各种提高厚度导电性的解决方案中,用混合微编织金属碳纤维纱线簇绒是最有前途的方法之一。作为一种典型的贯穿厚度增强方法,簇绒可在制造环境中轻松实现。编织物中的材料混合提高了纱线的弹性和完整性,而集成金属丝则开辟了广泛的多功能应用领域。通过改变编织图案和构成的纱线/金属丝可以产生许多构造。因此,需要一种预测性设计工具来为所需的功能和结构性能选择正确的材料配置。本文提出了一种快速而强大的方法来生成编织物的有限元模型,验证了微结构和电导率的预测,并论证了编织簇增强的复合材料的成功制造。通过改变编织图案和构成的纱线/金属丝可以产生许多构造。因此,需要一种预测性设计工具来为所需的功能和结构性能选择正确的材料配置。本文提出了一种快速而强大的方法来生成编织物的有限元模型,验证了微结构和电导率的预测,并论证了编织簇增强的复合材料的成功制造。通过改变编织图案和构成的纱线/金属丝可以产生许多构造。因此,需要一种预测性设计工具来为所需的功能和结构性能选择正确的材料配置。本文提出了一种快速而强大的方法来生成编织物的有限元模型,验证了微结构和电导率的预测,并论证了编织簇增强的复合材料的成功制造。
更新日期:2021-02-17
down
wechat
bug