当前位置: X-MOL 学术J. Hazard. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metagenomic analysis of aromatic ring-cleavage mechanism in nano-Fe3O4@activated coke enhanced bio-system for coal pyrolysis wastewater treatment
Journal of Hazardous Materials ( IF 13.6 ) Pub Date : 2021-02-17 , DOI: 10.1016/j.jhazmat.2021.125387
Mengqi Zheng , Hongjun Han , Jingxin Shi , Zhengwen Zhang , Wencheng Ma , Chunyan Xu

In current study, nano-Fe3O4@activated coke enhanced bio-system (FEBS) under limited-oxygen condition was applied for efficient treatment of aromatic organics in coal pyrolysis wastewater. Metagenomic analyses revealed functional microbiome linkages and mechanism involved in aromatic ring-cleavage. Based on biodegradation efficiency in different reactors, FEBS supplementation conferred the best organic removal (avg. 92.29%). It also showed a remarkable advantage in biodegradability maintenance (> 40%) over control reactors. Metagenomics profiling revealed the degradation processes were driven by Fe3O4 redox reactions and microbial biofilm, while the suspended sludge was the principal force for aromatic mineralization. Based on the analysis of functional species and genes, most bacteria cleaved the benzene ring preferably through the aerobic pathways, mediated by catechol 1, 2-dioxygenase, catechol 2, 3-dioxygenase and protocatechuate 3, 4-dioxygenase (66−84%). Ecological network showed that Comamonas testosterone-centered microbiome and Azotobacter linked to the nitrogen (N)-heterocyclic ring-cleavage. Network linkage further demonstrated that Alicycliphilus and Acidovorax were the key tone taxa involved in benzene ring-cleavage. Finally, combined with analysis of degradation products, bacteria degraded N-heterocyclic ring containing organic aromatic compounds (quinoline) mainly through anaerobic processes, whereas cleavage of benzene ring preferred aerobic pathways. The enriched functional species were the primary reason for the enhanced biodegradation in FEBS.



中文翻译:

纳米Fe 3 O 4活化焦强化生物系统处理煤热解废水中芳环裂解机理的元基因组学分析

在目前的研究中,将有限氧条件下的纳米Fe 3 O 4活化焦增强生物系统(FEBS)用于煤热解废水中芳香族有机物的有效处理。元基因组学分析表明功能性微生物组的联系和芳香环裂解涉及的机制。根据不同反应器中的生物降解效率,补充FEBS可以实现最佳的有机去除率(平均92.29%)。 与对照反应器相比,它在生物降解性维持(> 40%)方面也显示出显着优势。元基因组学分析显示降解过程是由Fe 3 O 4驱动的氧化还原反应和微生物生物膜,而悬浮污泥是芳族矿化的主要力量。根据功能物种和基因的分析,大多数细菌优选通过有氧途径裂解苯环,该途径由儿茶酚1、2-二加氧酶,儿茶酚2、3-二加氧酶和原儿茶酸酯3、4-二加氧酶介导(66-84%) 。生态网络表明,以Comamonas睾丸激素为中心的微生物组和固氮菌与氮(N)-杂环环断裂有关。台网联动进一步证明Alicycliphilus西瓜果是参与苯环裂解的关键类群。最后,结合降解产物的分析,细菌主要通过厌氧过程降解了包含有机芳香族化合物(喹啉)的N-杂环,而裂解苯环则是优选的好氧途径。功能丰富的物种是FEBS中生物降解增强的主要原因。

更新日期:2021-03-03
down
wechat
bug