当前位置: X-MOL 学术Asia Pac. J. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Application of data reconciliation and gross error detection techniques to enhance reliability and consistency of the blast furnace process data
Asia-Pacific Journal of Chemical Engineering ( IF 1.8 ) Pub Date : 2021-02-16 , DOI: 10.1002/apj.2628
Sujan Hazra 1 , Prakash Abhale 1 , Samik Nag 1 , Sam Mathew 2 , Shankar Narasimhan 3
Affiliation  

Effective control of a blast furnace (BF) process requires accurate estimates of key process indicators (KPIs), namely, productivity, coke rate, direct reduction per cent, adiabatic flame temperature, bosh gas volume and top gas utilization. Some of these KPIs are obtained directly from the measurements, and some are derived by carrying out material and energy balances on measurements of different feeds, their compositions and temperatures. Due to errors in the measurements, the estimates of the KPIs can be inconsistent or misleading, which may result in misinterpretation of the current state of the BF process. Hence, it is necessary to reconcile the measurement data before these are used either for interpreting the current furnace state directly or as an input to other models. In the proposed methodology, data reconciliation and gross error detection techniques are used to improve the accuracy of the estimates of process variables and parameters, by ensuring that they satisfy process constraints such as elemental balances of iron, nitrogen, carbon, oxygen and hydrogen. Since the BF is a fed-batch process, a customized version of these techniques has been developed and applied real time to an operating BF. The method is shown to be useful in deriving consistent estimates of the hot metal production rate, identifying gross errors in the online gas analyser and for estimating unmeasured parameters, such as top gas flow rate, its moisture concentration and calorific value which are useful for the purpose of stove heating in the downstream process.

中文翻译:

应用数据核对和粗差检测技术提高高炉工艺数据的可靠性和一致性

高炉 (BF) 工艺的有效控制需要准确估计关键工艺指标 (KPI),即生产率、焦炭率、直接还原百分比、绝热火焰温度、炉气量和炉顶气利用率。这些 KPI 中的一些是直接从测量中获得的,另一些是通过对不同进料、它们的成分和温度的测量进行材料和能量平衡得出的。由于测量中的错误,KPI 的估计可能不一致或具有误导性,这可能导致对 BF 过程的当前状态的误解。因此,在将测量数据用于直接解释当前熔炉状态或作为其他模型的输入之前,有必要协调测量数据。在提议的方法中,通过确保过程变量和参数满足过程限制条件,例如铁、氮、碳、氧和氢的元素平衡,数据协调和总错误检测技术用于提高过程变量和参数估计的准确性。由于 BF 是分批补料工艺,因此开发了这些技术的定制版本并实时应用于运行中的 BF。该方法被证明可用于推导铁水生产率的一致估计值、识别在线气体分析仪中的总误差以及估计未测量的参数,例如炉顶气体流速、其水分浓度和热值,这些参数对后道工序炉灶加热的目的。通过确保它们满足工艺限制,例如铁、氮、碳、氧和氢的元素平衡。由于 BF 是分批补料工艺,因此开发了这些技术的定制版本并实时应用于运行中的 BF。该方法被证明可用于推导铁水生产率的一致估计值、识别在线气体分析仪中的总误差以及估计未测量的参数,例如炉顶气体流速、其水分浓度和热值,这些参数对后道工序炉灶加热的目的。通过确保它们满足工艺限制,例如铁、氮、碳、氧和氢的元素平衡。由于 BF 是分批补料工艺,因此开发了这些技术的定制版本并实时应用于运行中的 BF。该方法被证明可用于推导铁水生产率的一致估计值、识别在线气体分析仪中的总误差以及估计未测量的参数,例如炉顶气体流速、其水分浓度和热值,这些参数对后道工序炉灶加热的目的。这些技术的定制版本已经开发出来并实时应用于运行中的 BF。该方法被证明可用于推导铁水生产率的一致估计值、识别在线气体分析仪中的总误差以及估计未测量的参数,例如炉顶气体流速、其水分浓度和热值,这些参数对后道工序炉灶加热的目的。这些技术的定制版本已经开发出来并实时应用于运行中的 BF。该方法被证明可用于推导铁水生产率的一致估计值、识别在线气体分析仪中的总误差以及估计未测量的参数,例如炉顶气体流速、其水分浓度和热值,这些参数对后道工序炉灶加热的目的。
更新日期:2021-02-16
down
wechat
bug