当前位置: X-MOL 学术Appl. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions
Applied Thermal Engineering ( IF 6.4 ) Pub Date : 2021-02-16 , DOI: 10.1016/j.applthermaleng.2021.116661
Depeng Kong , Gongquan Wang , Ping Ping , Jenifer Wen

The proliferating thermal runaway accidents are still the main obstacle that hinders the extensive applications of lithium-ion batteries. An abuse condition triggering thermal runaway of particular interest is local heating, which is the direct and common cause. However, a comprehensive simulation and analysis of thermal runaway under local heating from the perspective of heat generation, external heat and heat loss still lacks. In this study, a three-dimensional model was developed within frame of open source computational fluid dynamics code OpenFOAM to study the effects of various battery materials, external heating conditions and heat dissipation conditions on battery thermal runaway behavior. The results indicate that batteries with Li4Ti5O12 anode and LiFePO4 cathode show better thermal safety and stability than other materials. The increasing separator melting temperature improves the onset temperature of thermal runaway and delays its occurrence. Additionally, the heating position near the bottom of batteries was found more inclined to induce thermal runaway than other heating positions. Increasing air velocity and reducing ambient temperature help batteries stay in the steady-state and provide effective relief from thermal runaway. These conclusions may provide references for the safe design of thermal management system of battery packs.



中文翻译:

不同电池材料和加热条件下锂离子电池热失控行为的数值研究

不断增长的热失控事故仍然是阻碍锂离子电池广泛应用的主要障碍。引起特别关注的热失控的滥用条件是局部加热,这是直接且常见的原因。然而,仍然缺乏从生热,外部热量和热损失的角度对局部加热下的热失控进行全面的模拟和分析。在这项研究中,在开源计算流体动力学代码OpenFOAM的框架内开发了一个三维模型,以研究各种电池材料,外部加热条件和散热条件对电池热失控行为的影响。结果表明,Li 4 Ti 5 O 12电池阳极和LiFePO 4阴极显示出比其他材料更好的热安全性和稳定性。分离器熔化温度的升高会提高热失控的起始温度并延迟其发生。另外,发现电池底部附近的加热位置比其他加热位置更倾向于引起热失控。增大风速并降低环境温度有助于电池保持稳定状态并有效缓解热失控。这些结论可为电池组热管理系统的安全设计提供参考。

更新日期:2021-02-21
down
wechat
bug