当前位置: X-MOL 学术arXiv.cs.CE › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Material absorption-based carrier generation model for modeling optoelectronic devices
arXiv - CS - Computational Engineering, Finance, and Science Pub Date : 2021-02-12 , DOI: arxiv-2102.06702
Liang Chen, Hakan Bagci

The generation rate of photocarriers in optoelectronic materials is commonly calculated using the Poynting vector in the frequency domain. In time-domain approaches where the nonlinear coupling between electromagnetic (EM) waves and photocarriers can be accounted for, the Poynting vector model is no longer applicable. One main reason is that the photocurrent radiates low-frequency EM waves out of the spectrum of the source, e.g., terahertz (THz) waves are generated in THz photoconductive antennas. These frequency components do not contribute to the photocarrier generation since the corresponding photon energy is smaller than the optoelectronic material's bandgap energy. However, the instantaneous Poynting vector does not distinguish the power flux of different frequency components. This work proposes a material absorption-based model capable of calculating the carrier generation rate accurately in the time domain. Using the Lorentz dispersion model with poles reside in the optical frequency region, the instantaneous optical absorption, which corresponds to the power dissipation in the polarization, is calculated and used to calculate the generation rate. The Lorentz model is formulated with an auxiliary differential equation method that updates the polarization current density, from which the absorbed optical power corresponding to each Lorentz pole is directly calculated in the time domain. Examples show that the proposed model is more accurate than the Poynting vector-based model and is stable even when the generated low-frequency component is strong.

中文翻译:

用于模型化光电器件的基于材料吸收的载流子产生模型

通常使用频域中的Poynting向量来计算光电材料中光电载体的产生速率。在可以考虑电磁(EM)波与光载波之间的非线性耦合的时域方法中,Poynting矢量模型不再适用。一个主要原因是光电流辐射出源频谱之外的低频EM波,例如,在THz光电导天线中产生了太赫兹(THz)波。由于相应的光子能量小于光电材料的带隙能量,因此这些频率分量不会有助于光载波的产生。但是,瞬时坡印廷矢量不能区分不同频率分量的功率通量。这项工作提出了一种基于材料吸收的模型,该模型能够在时域中准确计算载流子的产生速率。使用极点位于光频率范围内的洛伦兹色散模型,计算与偏振中的功率损耗相对应的瞬时光吸收,并将其用于计算发生率。洛伦兹模型是通过辅助微分方程方法制定的,该方法可以更新极化电流密度,由此可以在时域中直接计算与每个洛伦兹极点相对应的吸收光功率。实例表明,提出的模型比基于Poynting向量的模型更准确,并且即使在生成的低频分量很强时也很稳定。使用极点位于光频率范围内的洛伦兹色散模型,计算与偏振中的功率损耗相对应的瞬时光吸收,并将其用于计算发生率。用辅助微分方程方法制定洛伦兹模型,该方法可更新极化电流密度,由此可在时域中直接计算与每个洛伦兹极点相对应的吸收光功率。实例表明,提出的模型比基于Poynting向量的模型更准确,并且即使在生成的低频分量很强时也很稳定。使用极点位于光频率范围内的洛伦兹色散模型,计算与偏振中的功率损耗相对应的瞬时光吸收,并将其用于计算发生率。洛伦兹模型是通过辅助微分方程方法制定的,该方法可以更新极化电流密度,由此可以在时域中直接计算与每个洛伦兹极点相对应的吸收光功率。实例表明,提出的模型比基于Poynting向量的模型更准确,并且即使在生成的低频分量很强时也很稳定。计算并用于计算发电率。洛伦兹模型是通过辅助微分方程方法制定的,该方法可以更新极化电流密度,由此可以在时域中直接计算与每个洛伦兹极点相对应的吸收光功率。实例表明,所提出的模型比基于Poynting向量的模型更准确,并且即使在生成的低频分量很强时也很稳定。计算并用于计算发电率。洛伦兹模型是通过辅助微分方程方法制定的,该方法可以更新极化电流密度,由此可以在时域中直接计算与每个洛伦兹极点相对应的吸收光功率。实例表明,所提出的模型比基于Poynting向量的模型更准确,并且即使在生成的低频分量很强时也很稳定。
更新日期:2021-02-15
down
wechat
bug