当前位置: X-MOL 学术Groundwater › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Case Studies of Geothermal System Response to Perturbations in Groundwater Flow and Thermal Regimes
Ground Water ( IF 2.6 ) Pub Date : 2021-02-14 , DOI: 10.1111/gwat.13086
Corinna Abesser , Robert A Schincariol 1 , Jasmin Raymond 2 , Alejandro García-Gil 3 , Ronan Drysdale 1 , Alex Piatek 1 , Nicolò Giordano 2 , Nehed Jaziri 2 , John Molson 4
Affiliation  

Global demands for energy-efficient heating and cooling systems coupled with rising commitments toward net zero emissions is resulting in wide deployment of shallow geothermal systems, typically installed to a depth of 100 to 200 m, and in the continued growth of the global ground source heat pump (GSHP) market. Ground coupled heat pump (GCHP) systems take up to 85% of the global GSHP market. With increasing deployment of GCHP systems in urban areas coping with limited regulations, there is growing potential and risk for these systems to impact the subsurface thermal regime and to interact with each other or with nearby heat-sensitive subsurface infrastructure. In this paper, we present three numerical modeling case studies, from the UK and Canada, which examine GCHP systems' response to perturbation of the wider hydrogeological and thermal regimes. The studies demonstrate how GCHP systems can be impacted by external influences and perturbations arising from subsurface activities that change the thermal and hydraulic regimes in the area surrounding these systems. Additional subsurface heat loads near existing schemes are found to have varied impacts on system efficiency with reduction ranging from <1% to 8%, while changes in groundwater flow rates (due to a nearby groundwater abstraction) reduced the effective thermal conductivity at the study site by 13%. The findings support the argument in favor of regulation of GCHP systems or, to a minimum, their registration with records of locations and approximate heat pump capacity—even though these systems do not abstract/inject groundwater.

中文翻译:

地热系统对地下水流和热力状态扰动响应的案例研究

全球对节能供暖和制冷系统的需求,加上对净零排放的承诺不断增加,导致浅层地热系统的广泛部署,通常安装在 100 至 200 米的深度,并导致全球地源热的持续增长泵 (GSHP) 市场。地面耦合热泵 (GCHP) 系统占据了全球 GSHP 市场的 85%。随着城市地区越来越多地部署 GCHP 系统以应对有限的法规,这些系统影响地下热状态并相互影响或与附近的热敏地下基础设施相互作用的潜力和风险越来越大。在本文中,我们介绍了来自英国和加拿大的三个数值模拟案例研究,这些案例研究检查了 GCHP 系统的 响应更广泛的水文地质和热状况的扰动。这些研究证明了 GCHP 系统如何受到外部影响和地下活动引起的扰动的影响,这些活动改变了这些系统周围区域的热力和水力状况。发现现有方案附近的额外地下热负荷对系统效率有不同的影响,降低范围从 <1% 到 8%,而地下水流速的变化(由于附近的地下水抽取)降低了研究地点的有效热导率13%。调查结果支持支持对 GCHP 系统进行监管的论点,或者至少,将它们与位置记录和近似热泵容量进行登记——即使这些系统不抽取/注入地下水。这些研究证明了 GCHP 系统如何受到外部影响和地下活动引起的扰动的影响,这些活动改变了这些系统周围区域的热力和水力状况。发现现有方案附近的额外地下热负荷对系统效率有不同的影响,降低范围从 <1% 到 8%,而地下水流速的变化(由于附近的地下水抽取)降低了研究地点的有效热导率13%。调查结果支持支持对 GCHP 系统进行监管的论点,或者至少,将它们与位置记录和近似热泵容量进行登记——即使这些系统不抽取/注入地下水。这些研究证明了 GCHP 系统如何受到外部影响和地下活动引起的扰动的影响,这些活动改变了这些系统周围区域的热力和水力状况。发现现有方案附近的额外地下热负荷对系统效率有不同的影响,降低范围从 <1% 到 8%,而地下水流速的变化(由于附近的地下水抽取)降低了研究地点的有效热导率13%。调查结果支持支持对 GCHP 系统进行监管的论点,或者至少,将它们与位置记录和近似热泵容量进行登记——即使这些系统不抽取/注入地下水。
更新日期:2021-02-14
down
wechat
bug