当前位置: X-MOL 学术Int. J. Fatigue › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fatigue behaviors of 2205 duplex stainless steel with gradient nanostructured surface layer
International Journal of Fatigue ( IF 6 ) Pub Date : 2021-02-13 , DOI: 10.1016/j.ijfatigue.2021.106170
Yi-Xin Liu , Hao Chen , Run-Zi Wang , Yun-Fei Jia , Xian-Cheng Zhang , Yan Cui , Shan-Tung Tu

Fatigue behaviors of 2205 duplex stainless steel (initially composed of austenite and ferrite phase) with a gradient nanostructured (GNS) surface layer induced by the ultrasonic rolling process (USRP), are investigated in both strain-controlled high-cycle fatigue (HCF) and low-cycle fatigue (LCF) tests. Results showed that the fatigue life is improved in HCF (~5 times longer under 0.3% strain) but decreased in LCF (~53% under 0.8% strain). This is different from the simultaneous enhancement of fatigue behaviors in both HCF and LCF in other materials with GNS. The effect of martensite phase transformation (MPT), residual compressive stress as well as the GNS layers have been investigated to clarify the mechanisms of the fatigue behavior of the USRP samples. Besides the suppression of the surface crack initiation and propagation by residual compressive stress and GNS layers, the MPT during the USRP and cyclic loading processes greatly affects the fatigue behaviors. For HCF tests, not only the hard-brittle martensite phase induced by the USRP process improved the material strength but also the MPT process during cyclic loading absorbed the strain energy released from the crack growth, which increased the HCF life. However, for LCF tests, the hard-brittle martensite phase decreased the ductility of the GNS layer and accelerated the crack growth rate under higher strain amplitude, resulting in the decrement of LCF life. This work presents the first investigation on fatigue behaviors of duplex stainless steel with GNS structure.



中文翻译:

具有梯度纳米结构表面层的2205双相不锈钢的疲劳行为

研究了2205双相不锈钢(最初由奥氏体和铁素体相组成)的表面行为,该表面是由超声轧制工艺(USRP)引起的,具有梯度纳米结构(GNS)表面层,在应变控制的高周疲劳(HCF)和低周疲劳(LCF)测试。结果表明,HCF的疲劳寿命有所改善(在0.3%应变下约5倍),而LCF降低了(0.8%应变下约53%)。这与同时使用GNS的其他材料在HCF和LCF中同时增强疲劳行为不同。研究了马氏体相变(MPT),残余压应力以及GNS层的影响,以阐明USRP样品疲劳行为的机理。除了通过残余压应力和GNS层抑制表面裂纹萌生和扩展外,在USRP和循环加载过程中的MPT还极大地影响疲劳行为。对于HCF测试,不仅USRP工艺引起的硬脆马氏体相提高了材料强度,而且在循环载荷下的MPT工艺吸收了裂纹扩展释放的应变能,从而延长了HCF寿命。然而,对于LCF测试,在较高的应变幅度下,硬脆性马氏体相降低了GNS层的延展性并加速了裂纹的生长速度,从而导致LCF寿命的缩短。这项工作是对具有GNS结构的双相不锈钢的疲劳行为的首次研究。MRP在USRP和循环加载过程中会极大地影响疲劳行为。对于HCF测试,不仅USRP工艺引起的硬脆马氏体相提高了材料强度,而且在循环载荷下的MPT工艺吸收了裂纹扩展释放的应变能,从而延长了HCF寿命。然而,对于LCF测试,在较高的应变幅度下,硬脆性马氏体相降低了GNS层的延展性并加速了裂纹的生长速度,从而导致LCF寿命的降低。这项工作是对具有GNS结构的双相不锈钢的疲劳行为的首次研究。MRP在USRP和循环加载过程中会极大地影响疲劳行为。对于HCF测试,不仅USRP工艺引起的硬脆马氏体相提高了材料强度,而且在循环载荷下的MPT工艺吸收了裂纹扩展释放的应变能,从而延长了HCF寿命。然而,对于LCF测试,在较高的应变幅度下,硬脆性马氏体相降低了GNS层的延展性并加速了裂纹的生长速度,从而导致LCF寿命的缩短。这项工作是对具有GNS结构的双相不锈钢的疲劳行为的首次研究。通过USRP工艺诱导的硬脆马氏体相不仅提高了材料强度,而且在循环加载过程中的MPT工艺吸收了裂纹扩展释放的应变能,从而延长了HCF寿命。然而,对于LCF测试,在较高的应变幅度下,硬脆性马氏体相降低了GNS层的延展性并加速了裂纹的生长速度,从而导致LCF寿命的缩短。这项工作是对具有GNS结构的双相不锈钢的疲劳行为的首次研究。通过USRP工艺诱导的硬脆马氏体相不仅提高了材料强度,而且在循环加载过程中的MPT工艺吸收了裂纹扩展释放的应变能,从而延长了HCF寿命。然而,对于LCF测试,在较高的应变幅度下,硬脆性马氏体相降低了GNS层的延展性并加速了裂纹的生长速度,从而导致LCF寿命的缩短。这项工作是对具有GNS结构的双相不锈钢的疲劳行为的首次研究。

更新日期:2021-02-23
down
wechat
bug