当前位置: X-MOL 学术Appl. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Response behaviors of CO2 transcritical Rankine cycle based parabolic trough solar power plant to cloud disturbance
Applied Thermal Engineering ( IF 6.4 ) Pub Date : 2021-02-14 , DOI: 10.1016/j.applthermaleng.2021.116722
Zhenghua Rao , Cunyue Peng , Yaqiong Wang , Yitao Wang , Gang Liu , Shengming Liao

The CO2 transcritical Rankine cycle (CO2-TRC) has a great potential for the application in concentrating solar power (CSP) system due to the advantages of using low- and medium- temperature sources and compact structures. However, the cloud passages always lead to the suddenly varied heat input to the system, while understanding the system’s response to the cloud disturbance may enable the operational stability which is viable for driving the advanced CO2-TRC system. In this study, a dynamic thermodynamics model is developed to simulate the response behaviors of the simple and regenerative CO2-TRC based trough CSP systems under various cloud disturbances. The results show that by examining the system’s performances, the cloud thickness mainly affects the variation range, while the cloud cover duration mainly affects recovery time. At the same cloud thickness, the recovery time for the regenerative system could be about three times longer than that for the simple system. Subject to the cloud with same cover duration, the simple system tends to reach the stable state in the shorter time. As the collector is shaded by a moving cloud, the system’s recovery time is almost same but the system efficiency has the smaller decrease as compared to the stationary cloud coverage with the same duration. These results allow determining the optimal design and operating scheme of the CO2-TRC based CSP systems to increase the output power and operating stability.



中文翻译:

基于CO 2跨临界朗肯循环的抛物槽太阳能电站对云扰动的响应行为

该CO 2跨临界兰金循环(CO 2 -TRC)具有用于在聚光太阳能发电(CSP)系统中的应用的巨大潜力由于使用低压和中温度源和紧凑的结构的优点。然而,云通道总是导致突然变化的热量输入到系统,同时理解系统对云干扰的响应可以实现操作稳定性,这对于驱动先进的CO 2 -TRC系统是可行的。在这项研究中,建立了动态​​热力学模型来模拟简单再生CO 2的响应行为。-在各种云干扰下基于TRC的槽式CSP系统。结果表明,通过检查系统性能,云厚度主要影响变化范围,而云层覆盖持续时间主要影响恢复时间。在相同的云层厚度下,再生系统的恢复时间可能比简单系统的恢复时间长约三倍。在具有相同覆盖持续时间的云的情况下,简单系统趋于在较短时间内达到稳定状态。由于收集器被移动的云遮挡,因此系统的恢复时间几乎相同,但是与相同持续时间的固定云覆盖相比,系统效率的下降幅度较小。这些结果可以确定CO 2的最佳设计和运行方案-基于TRC的CSP系统,以增加输出功率和运行稳定性。

更新日期:2021-02-23
down
wechat
bug