当前位置: X-MOL 学术Vehicle Syst. Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic performance of locomotive electric drive system under excitation from gear transmission and wheel-rail interaction
Vehicle System Dynamics ( IF 3.6 ) Pub Date : 2021-02-11 , DOI: 10.1080/00423114.2021.1876887
Ziwei Zhou 1 , Zaigang Chen 1 , Maksym Spiryagin 2 , Peter Wolfs 2 , Qing Wu 2 , Wanming Zhai 1 , Colin Cole 2
Affiliation  

Development of railway transportation capabilities towards high-power, high-speed and heavy axle-load makes the dynamic interactions between the electric drive subsystem and the mechanical subsystem of a locomotive more intensive and complicated, which may threaten the locomotive operational safety. However, the included dynamics mechanism and influencing law have not been revealed completely. Based on the co-simulation method and vehicle-track coupling dynamics, a model which enables considering dynamic interactions between the electric drive subsystem and the mechanical subsystem of a locomotive through an electromagnetic coupling interface and motor control subsystem is developed in this paper. By using this co-simulation model, the dynamic responses of the mechanical subsystem and the electric drive subsystem are analysed under complicated dynamic excitation, such as the time-varying gear mesh stiffness and the track geometric irregularity. The results indicate an obvious interaction between the electric drive subsystem and the mechanical subsystem, where the vibration status of the major mechanical components can be reflected by the electric current signals. Besides, the characteristic frequencies of the gear transmission can be extracted from the frequency spectrum of the traction motor current signals, which provides the possibility for condition monitoring and fault diagnosis of the locomotive mechanical components through the electrical signals.



中文翻译:

齿轮传动和轮轨相互作用激励下机车电驱动系统的动态性能

铁路运输能力向大功率、高速、重轴载方向发展,使得机车电驱动子系统与机械子系统的动态相互作用更加密集和复杂,可能威胁机车运行安全。但其所包含的动力学机制和影响规律尚未完全揭示。本文基于协同仿真方法和车辆-轨道耦合动力学,开发了一种通过电磁耦合接口和电机控制子系统考虑机车电力驱动子系统和机械子系统之间动态相互作用的模型。通过使用这种协同仿真模型,分析了机械子系统和电力驱动子系统在复杂动态激励下的动态响应,如时变齿轮啮合刚度和轨道几何不规则性。结果表明,电驱动子系统和机械子系统之间存在明显的相互作用,主要机械部件的振动状态可以通过电流信号来反映。此外,还可以从牵引电机电流信号的频谱中提取齿轮传动的特征频率,为通过电信号对机车机械部件进行状态监测和故障诊断提供了可能。结果表明,电驱动子系统和机械子系统之间存在明显的相互作用,主要机械部件的振动状态可以通过电流信号来反映。此外,还可以从牵引电机电流信号的频谱中提取齿轮传动的特征频率,为通过电信号对机车机械部件进行状态监测和故障诊断提供了可能。结果表明,电驱动子系统和机械子系统之间存在明显的相互作用,主要机械部件的振动状态可以通过电流信号来反映。此外,还可以从牵引电机电流信号的频谱中提取齿轮传动的特征频率,为通过电信号对机车机械部件进行状态监测和故障诊断提供了可能。

更新日期:2021-02-11
down
wechat
bug