当前位置: X-MOL 学术Laser Photonics Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spatiotemporal Terahertz Metasurfaces for Ultrafast All‐Optical Switching with Electric‐Triggered Bistability
Laser & Photonics Reviews ( IF 11.0 ) Pub Date : 2021-02-12 , DOI: 10.1002/lpor.202000456
Yuze Hu 1 , Mingyu Tong 1 , Zhongjie Xu 1 , Xiangai Cheng 1 , Tian Jiang 2
Affiliation  

Optoelectronic terahertz switching achieved by dynamically tuning metamaterials is viewed as a major breakthrough in promoting the advancement of terahertz technology. However, the main thrust toward the development of ultrafast switchable components and optical logic operations is still in a catch‐up stage for progressively increasing information and communication demands. Here, a novel spatiotemporal metadevice is proposed for terahertz wave steering in multidimensional domains with ultrahigh spatial and ultrafast temporal manipulations. By spatially changing the interconnect architecture via the embedded vanadium dioxide bridges, the state of electromagnetically induced transparency resonance is switched between “1” and “0” states under electrical stimuli, exhibiting a typical 1 bit coding bistability with a long retention time. Furthermore, with the characteristic of writable/erasable logic operation, ultrafast photoswitching of each memorized state is manifested by delivering optical excitations. The high‐speed temporal response of terahertz radiation exhibits an on–off–on switching cycle within 16 ps, owing to the defect‐rich germanium photoactive layer. By leveraging both degrees of freedom in space and time domains, this multifunctional spatiotemporal metaphotonic device can upgrade and improve the current capabilities of optical computing, data storage, and ultrahigh‐speed information processing, paving the way for a highly unexplored territory toward manipulations of light.

中文翻译:

时空太赫兹超颖表面,具有电触发双稳态的超快全光切换

通过动态调整超材料而实现的太赫兹光电开关被视为推动太赫兹技术发展的重大突破。但是,对超快可切换组件和光学逻辑运算的开发的主要推动力仍处于追赶阶段,以逐步增加信息和通信需求。在这里,提出了一种新颖的时空元设备,用于通过超高空间和超快时间操纵在多维域中进行太赫兹波控制。通过经由嵌入式二氧化钒桥在空间上改变互连体系结构,在电刺激下,电磁感应的透明共振的状态在“ 1”和“ 0”状态之间切换,表现出典型的1位编码双稳态且具有较长的保留时间。此外,具有可写/可擦逻辑操作的特性,通过存储光激发,可以显示每个存储状态的超快光开关。由于富含缺陷的锗光敏层,太赫兹辐射的高速时间响应表现出在16 ps内的开-关-开切换周期。通过利用时空的两个自由度,这种多功能的时空超光子设备可以升级和改善当前的光学计算,数据存储和超高速信息处理能力,为高度未开发的领域进行光处理铺平了道路。 。由于富含缺陷的锗光敏层,太赫兹辐射的高速时间响应在16 ps内表现出开-关-开的切换周期。通过利用时空的两个自由度,这种多功能的时空超光子设备可以升级和改善当前的光学计算,数据存储和超高速信息处理能力,为高度未开发的领域进行光处理铺平了道路。 。由于富含缺陷的锗光敏层,太赫兹辐射的高速时间响应在16 ps内表现出开-关-开的切换周期。通过利用时空的两个自由度,这种多功能的时空超光子设备可以升级和改善当前的光学计算,数据存储和超高速信息处理能力,为高度未开发的领域进行光处理铺平了道路。 。
更新日期:2021-03-11
down
wechat
bug