当前位置: X-MOL 学术Opt. Laser Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bessel beam approach for photovoltaic trapping of micro- and nanoparticles on Fe-doped lithium niobate crystal
Optics & Laser Technology ( IF 5 ) Pub Date : 2021-02-12 , DOI: 10.1016/j.optlastec.2021.106949
Lusine Tsarukyan , Anahit Badalyan , Ruben Hovsepyan , Rafael Drampyan

The non-diffracting Bessel beam approach was used for the first time for the elaboration of photovoltaic tweezers. We report the trapping of dielectric microparticles of chalk (CaCO3), as well as silver nanoparticles in glycerin suspension via dielectrophoretic forces on the surface of Fe doped LiNbO3 (LN:Fe) crystal with recorded volume holographic grating by the non-diffracting Bessel beam technique. The photorefractive Y-cut LN:Fe crystal was illuminated by 20–40 mW power Bessel beam at 532 nm wavelength which generates refractive Bessel lattice with ~40 μm periodicity via induction of photovoltaic space-charge fields. The Bessel beam approach provides the induction of high contrast 2D quasi-periodic distribution of space-charge electric field in the crystal volume and proximity of the crystal surface and high quality 2D patterning of the particles. Experiments showed that CaCO3 microparticles are trapped by attractive forces on the crystal surface in the areas of refractive index maxima of the Bessel lattice, while the trapping of Ag nanoparticles dispersed in glycerin takes places at the borderlines of lattice rings due to the repulsive forces. A physical model was developed to explain the experimental results. The photovoltaic approach of trapping and manipulation of micro- and nanoparticles is promising for applications in photonics, integrated optics and biotechnology.



中文翻译:

贝塞尔光束法在铁掺杂铌酸锂晶体上捕获微米和纳米颗粒的光伏

无衍射贝塞尔光束法首次用于制造光电镊子。我们通过Fe掺杂的LiNbO 3表面的介电泳力报告了粉笔的电介质微粒(CaCO 3)以及甘油悬浮液中的银纳米颗粒的捕获(LN:Fe)晶体,通过非衍射贝塞尔光束技术记录体积全息光栅。用20–40 mW功率Bessel光束在532 nm波长下照射光折射Y形LN:Fe晶体,该光通过感应光伏空间电荷场产生周期性〜40μm的折射Bessel晶格。贝塞尔光束法提供了在晶体体积和晶体表面附近的空间电荷电场的高对比度2D准周期分布的感应以及粒子的高质量2D图案化实验表明,CaCO 3微粒被贝塞尔晶格的最大折射率区域中的晶体表面上的引力俘获,而分散在甘油中的银纳米颗粒的俘获则由于排斥力而发生在晶格环的边界线上。开发了物理模型来解释实验结果。捕获和处理微米和纳米颗粒的光伏方法有望用于光子学,集成光学和生物技术。

更新日期:2021-02-12
down
wechat
bug