当前位置: X-MOL 学术Nanomater. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Conversion of jet biofuel range hydrocarbons from palm oil over zeolite hybrid catalyst
Nanomaterials and Nanotechnology ( IF 3.7 ) Pub Date : 2021-02-10 , DOI: 10.1177/1847980420981536
Norsahika Mohd Basir 1 , Norkhalizatul Akmal Mohd Jamil 2 , Halimaton Hamdan 1, 2
Affiliation  

The catalytic conversion of palm oil was carried out over four zeolite catalysts—Y, ZSM-5, Y-ZSM-5 hybrid, and Y/ZSM-5 composite—to produce jet biofuel with high amount of alkanes and low amount of aromatic hydrocarbons. The zeolite Y-ZSM-5 hybrid catalyst was synthesized using crystalline zeolite Y as the seed for the growth of zeolite ZSM-5. Synthesized zeolite catalysts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and temperature programmed desorption of ammonia, while the chemical compositions of the jet biofuel were analyzed by gas chromatography-mass spectrometry (GC-MS). The conversion of palm oil over zeolite Y resulted in the highest yield (42 wt%) of jet biofuel: a high selectivity of jet range alkanes (51%) and a low selectivity of jet range aromatic hydrocarbons (25%). Zeolite Y-ZSM-5 hybrid catalyst produced a decreased percentage of jet range alkane (30%) and a significant increase in the selectivity of aromatic hydrocarbons (57%). The highest conversion of palm oil to hydrocarbon compounds was achieved by zeolite Y-ZSM-5 hybrid catalyst (99%), followed by zeolite Y/ZSM-5 composite (96%), zeolite Y (91%), and zeolite ZSM-5 (74%). The reaction routes for converting palm oil to jet biofuel involve deoxygenation of fatty acids into C15–C18 alkanes via decarboxylation and decarbonylation, catalytic cracking into C8–C14 alkanes, and cycloalkanes as well as aromatization into aromatic hydrocarbon.



中文翻译:

沸石杂化催化剂将棕榈油中的喷气生物燃料范围内的烃类转化

棕榈油的催化转化是在四种沸石催化剂(Y,ZSM-5,Y-ZSM-5杂化和Y / ZSM-5复合材料)上进行的,以生产含有大量烷烃和少量芳烃的喷气生物燃料。以结晶沸石Y为晶种ZSM-5的生长种子,合成了沸石Y-ZSM-5杂化催化剂。通过X射线衍射,傅里叶变换红外光谱,场发射扫描电子显微镜和程序升温氨解吸对合成的沸石催化剂进行了表征,同时通过气相色谱-质谱法(GC-MS)分析了喷射生物燃料的化学组成。 )。棕榈油在沸石Y上的转化导致喷气式生物燃料的最高收率(42 wt%):喷射范围烷烃的选择性高(51%),喷射范围芳烃的选择性低(25%)。沸石Y-ZSM-5杂化催化剂产生的射程范围烷烃百分比降低(30%),芳烃选择性大大提高(57%)。沸石Y-ZSM-5杂化催化剂(99%),其次是沸石Y / ZSM-5复合材料(96%),沸石Y(91%)和沸石ZSM- 5(74%)。将棕榈油转化为航空生物燃料的反应路线包括通过脱羧和脱羰基使脂肪酸脱氧为C15–C18烷烃,催化裂化为C8–C14烷烃和环烷烃以及芳构化为芳烃。沸石Y-ZSM-5杂化催化剂产生的射程范围烷烃百分比降低(30%),芳烃选择性大大提高(57%)。沸石Y-ZSM-5杂化催化剂(99%),其次是沸石Y / ZSM-5复合材料(96%),沸石Y(91%)和沸石ZSM- 5(74%)。将棕榈油转化为航空生物燃料的反应路线包括通过脱羧和脱羰基使脂肪酸脱氧为C15–C18烷烃,催化裂化为C8–C14烷烃和环烷烃以及芳构化为芳烃。沸石Y-ZSM-5杂化催化剂产生的射程范围烷烃百分比降低(30%),芳烃选择性大大提高(57%)。沸石Y-ZSM-5杂化催化剂(99%),其次是沸石Y / ZSM-5复合材料(96%),沸石Y(91%)和沸石ZSM- 5(74%)。将棕榈油转化为航空生物燃料的反应路线包括通过脱羧和脱羰基使脂肪酸脱氧为C15–C18烷烃,催化裂化为C8–C14烷烃和环烷烃以及芳构化为芳烃。其次是Y / ZSM-5沸石复合材料(96%),Y沸石(91%)和ZSM-5沸石(74%)。将棕榈油转化为航空生物燃料的反应路线包括通过脱羧和脱羰基使脂肪酸脱氧为C15–C18烷烃,催化裂化为C8–C14烷烃和环烷烃以及芳构化为芳烃。其次是Y / ZSM-5沸石复合材料(96%),Y沸石(91%)和ZSM-5沸石(74%)。将棕榈油转化为航空生物燃料的反应路线包括通过脱羧和脱羰基使脂肪酸脱氧为C15–C18烷烃,催化裂化为C8–C14烷烃和环烷烃以及芳构化为芳烃。

更新日期:2021-02-10
down
wechat
bug