当前位置: X-MOL 学术Biotechnol. Bioproc. E. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microfluidic Single-cell Trapping and Cultivation for the Analysis of Host-viral Interactions
Biotechnology and Bioprocess Engineering ( IF 3.2 ) Pub Date : 2021-02-10 , DOI: 10.1007/s12257-020-0143-1
Reya Ganguly , Byungjin Lee , Solib Kang , Yong Sic Kim , Seong-Geun Jeong , Jae Seong Kim , So Young Park , Yamauchi Yohei , Chang-Soo Lee

The isolation of single cells and their further cultivation in confined chambers are essential to the collection of statistically reliable temporal information in cell-based biological experiments. In this work, we present a hydrodynamic single-cell trapping and culturing platform that facilitates biological analysis and experimentation of virus infection into host cells. To find the optimum design of the cell trap at the microscale, we evaluated hook traps with different widths and trap intervals to obtain a high trapping efficiency of a single cell. The proposed design leverages the stochastic position of the cells as they flow into the structured microfluidic channels, where hundreds of single cells are then arrayed in nanoliter chambers for simultaneous cell-specific data collection. Optimum design is used to devise and implement a hydrodynamic cell-trapping mechanism that is minimally detrimental to the cell viability and retains a high trapping efficiency (90%), with the capability of reaching high fill factors (90%) in short loading times (10 min) in a 450-trap device. Finally, we perform an analysis of host-viral interactions under the treatment of a drug concentration gradient as a proof of concept.



中文翻译:

微流控单细胞诱捕和培养宿主病毒相互作用的分析。

在基于细胞的生物学实验中,单细胞的分离及其在密闭室内的进一步培养对于收集统计上可靠的时间信息至关重要。在这项工作中,我们提出了一种流体动力学的单细胞诱集和培养平台,该平台有助于生物学分析和病毒感染宿主细胞的实验。为了在微尺度上找到最佳的细胞捕获器设计,我们评估了具有不同宽度和捕获间隔的钩形捕获器,以获得单个细胞的高捕获效率。拟议的设计利用了细胞流入结构化微流体通道时的随机位置,然后将数百个单个细胞排列在纳升室中,以同时进行特定于细胞的数据收集。最佳设计用于设计和实现一种流体动力细胞捕获机制,该机制对细胞生存力的影响最小,并保留了很高的捕获效率(90%),并能在较短的加载时间内达到高填充因子(90%)( 10分钟)在450阱装置中。最后,我们在药物浓度梯度的处理下对宿主-病毒相互作用进行了分析,以此作为概念证明。

更新日期:2021-02-10
down
wechat
bug