当前位置: X-MOL 学术Soil Tillage Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Soil water retention dynamics in a Mollisol during a maize growing season under contrasting tillage systems
Soil and Tillage Research ( IF 6.5 ) Pub Date : 2021-02-09 , DOI: 10.1016/j.still.2021.104953
Xinjun Huang , Hengfei Wang , Meng Zhang , Rainer Horn , Tusheng Ren

A Soil water retention curve (SWRC) provides pore structure information and is usually measured in the laboratory on soil cores. In field, the dynamics of SWRC is affected by pore structure changes due to tillage operations and wet-drying cycles (WDs). While the temporal changes of SWRCs during WDs have long been reported, the dynamics of SWRC under different tillage systems are poorly understood. A field experiment was conducted on a Mollisol to determine the SWRC dynamics of conventional tillage (CT), no tillage (NT), and rotational tillage (RT) in the maize growing season of 2018. Volumetric water content and matric potential dynamics at three depths were monitored continuously, and the temporal changes of SWRCs were compared with laboratory data measured on soil cores. Results showed that SWRCs measured under field conditions varied with WDs and tillage treatments, especially in the wet range (0 hPa to -100 hPa). The water retention capacity of the tilled soils (i.e., CT and RT) gradually increased with WDs while that of NT in 0−5 cm was slightly decreased. Compared with the laboratory data, the dynamics of SWRC under field conditions were more prominent. During the observation period, NT showed the highest water retention capacity under both laboratory and field conditions when the matric potential of soil water was more negative than -100 hPa. The high rigidity of soil pore system and straw mulch on soil surface in NT maintained a relatively higher soil water retention capacity and reduced the temporal variation of SWRC in the maize growing season.



中文翻译:

不同耕作制度下玉米生长季土壤毛囊中的水分保持动态

土壤保水曲线(SWRC)提供了孔隙结构信息,通常在实验室中对土壤芯进行测量。在田间,SWRC的动力学受耕作操作和干湿循环(WDs)引起的孔结构变化的影响。虽然早已报道了WD期间SWRC的时间变化,但对不同耕作系统下SWRC的动态了解甚少。在Mollisol上进行了田间试验,以确定2018年玉米生长期常规耕作(CT),无耕种(NT)和旋转耕作(RT)的SWRC动态。三个深度的体积含水量和基质势动态连续监测,并将SWRCs的时间变化与在土壤芯上测得的实验室数据进行比较。结果表明,田间条件下测得的SWRC随WD和耕作处理而变化,尤其是在湿润范围(0 hPa至-100 hPa)中。耕作土壤(CT和RT)的持水量随WDs逐渐增加,而0-5 cm处的NT持水量略有下降。与实验室数据相比,现场条件下SWRC的动力学更为突出。在观测期内,当土壤水的基质势大于-100 hPa时,NT在实验室和田间条件下均表现出最高的保水能力。在北半球,土壤孔隙系统的高刚性和土壤表层的秸秆覆盖保持了相对较高的土壤保水能力,并减少了玉米生长期SWRC的时间变化。特别是在潮湿范围(0 hPa至-100 hPa)中。耕作土壤(CT和RT)的持水量随WDs逐渐增加,而0-5 cm处的NT持水量略有下降。与实验室数据相比,现场条件下SWRC的动力学更为突出。在观察期内,当土壤水的基质势大于-100 hPa时,NT在实验室和田间条件下均表现出最高的保水能力。在NT,土壤孔隙系统的高刚性和土壤表层的秸秆覆盖保持了相对较高的土壤保水能力,并减少了玉米生长季节SWRC的时间变化。特别是在潮湿范围(0 hPa至-100 hPa)中。耕作土壤(CT和RT)的持水量随WDs逐渐增加,而0-5 cm处的NT持水量略有下降。与实验室数据相比,现场条件下SWRC的动力学更为突出。在观测期内,当土壤水的基质势大于-100 hPa时,NT在实验室和田间条件下均表现出最高的保水能力。在NT,土壤孔隙系统的高刚性和土壤表层的秸秆覆盖保持了相对较高的土壤保水能力,并减少了玉米生长季节SWRC的时间变化。与实验室数据相比,现场条件下SWRC的动力学更为突出。在观测期内,当土壤水的基质势大于-100 hPa时,NT在实验室和田间条件下均表现出最高的保水能力。在NT,土壤孔隙系统的高刚性和土壤表层的秸秆覆盖保持了相对较高的土壤保水能力,并减少了玉米生长季节SWRC的时间变化。与实验室数据相比,现场条件下SWRC的动力学更为突出。在观测期内,当土壤水的基质势大于-100 hPa时,NT在实验室和田间条件下均表现出最高的保水能力。在NT,土壤孔隙系统的高刚性和土壤表层的秸秆覆盖保持了相对较高的土壤保水能力,并减少了玉米生长季节SWRC的时间变化。

更新日期:2021-02-09
down
wechat
bug