当前位置: X-MOL 学术Int. J. Greenh. Gas. Con. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Potential for uranium release under geologic CO2 storage conditions: The impact of Fe(III)
International Journal of Greenhouse Gas Control ( IF 3.9 ) Pub Date : 2021-02-09 , DOI: 10.1016/j.ijggc.2021.103266
Haibin Wang , Liwei Zhang , Hongwu Lei , Yan Wang , Hejuan Liu , Xiaochun Li , Xuebin Su

Saline aquifers are considered ideal subsurface sinks for large amounts of CO2 storage. It is common to have trace levels of uranium-bearing minerals (naturally occurring radioactive material, NORM) in sandstone saline aquifers and CO2 injection may cause uranium mobilization due to the coupled chemical and physical interactions at mineral-water interfaces. In this study, we developed a TOUGHREACT model to assess the uranium mobilization potential from uraninite (UO2) dissolution induced by CO2 injection into a hypothetical CO2 storage reservoir with Fe(III)-bearing hematite in a time scale of 30 years CO2 injection and 100 years after CO2 injection. Numerical simulation results show that injection of CO2 reduced pH and induced small amounts of hematite dissolution, which released Fe3+ into aqueous phase. Fe3+ together with dissolved bicarbonate species caused oxidative dissolution of UO2 (Fe3+ serving as an oxidant), resulting in an increase of dissolved uranium concentrations in the CO2 storage reservoir. However, the released uranium was limited to a small region close to Fe3+ supply source and the maximum concentration of released uranium was only 9.00 × 10−10 mol/kg in the CO2 storage reservoir at t = 30 years. The availability of Fe3+ is the main factor that limits mineralized uranium release because the pH drop induced by CO2 injection is not low enough to cause significant Fe3+ release. For sorbed uranium, the main factor that influences sorbed uranium release is pH because uranium sorption is amphoteric. Based on our simulation results, the pH range in the CO2 storage reservoir does not cause a substantial release of sorbed uranium. Also, the potential for released uranium to migrate through a permeable zone in the caprock to the layer above the caprock and cause groundwater contamination is negligible. In summary, results from this study imply a very low risk of environmental contamination by bicarbonate and Fe(III)-induced uranium mobilization.



中文翻译:

地质CO 2储存条件下铀释放的潜力:Fe(III)的影响

盐水层被认为是用于大量CO 2储存的理想地下水槽。通常在砂岩盐水层中含有微量的含铀矿物质(天然放射性物质,NORM),由于矿泉水界面的化学和物理相互作用,CO 2注入会引起铀动员。在这项研究中,我们开发了一个TOUGHREACT模型,以评估在30年的CO时间范围内,将CO 2注入假想的带有Fe(III)的赤铁矿的CO 2储集层中,注入CO 2引起的铀尿石(UO 2)溶出的铀动员潜力2次注入和CO 2后100年注射。数值模拟结果表明,注入CO 2降低pH值并引起少量赤铁矿溶解,从而将Fe 3+释放到水相中。Fe 3+和溶解的碳酸氢盐类物质引起UO 2的氧化溶解(Fe 3+作为氧化剂),导致CO 2储层中溶解铀的浓度增加。但是,在t = 30年​​时,CO 2储集层中的释放铀被限制在靠近Fe 3+供应源的小区域,并且最大释放铀浓度仅为9.00×10 -10 mol / kg 。铁的可用性3+是限制矿化铀释放的主要因素,因为注入CO 2引起的pH下降不足以导致Fe 3+大量释放。对于吸附铀,影响吸附铀释放的主要因素是pH,因为铀吸附​​是两性的。根据我们的模拟结果,CO 2储存库中的pH范围不会引起吸附铀的大量释放。而且,释放出来的铀穿过盖层中的可渗透区迁移到盖层上方的层并引起地下水污染的可能性可以忽略不计。总之,这项研究的结果表明,由碳酸氢盐和Fe(III)引起的铀动员对环境造成污染的风险非常低。

更新日期:2021-02-09
down
wechat
bug