当前位置: X-MOL 学术Int. Commun. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mathematical modelling of unsteady solute dispersion in two-fluid (micropolar-Newtonian) blood flow with bulk reaction
International Communications in Heat and Mass Transfer ( IF 7 ) Pub Date : 2021-02-09 , DOI: 10.1016/j.icheatmasstransfer.2021.105169
Ashis Kumar Roy , O. Anwar Bég

A mathematical model is developed for hemodynamic transport of a reactive diffusing species e.g., oxygen in a rigid artery under constant axial pressure gradient and undergoing a first-order chemical reaction with streaming blood. A two-fluid model is deployed where the core region is simulated as an Eringen micropolar fluid, and the plasma layer engulfing the core, i.e., near the boundary, is analyzed as Newtonian viscous fluid. Closed-form solutions are presented for the velocity and micro-rotation profiles, and a Gill decomposition method is deployed for the concentration field. Expressions are derived for the dispersion coefficient, mean and transverse concentration. Transverse concentration is observed to be enhanced with increasing micropolar coupling number (N) and reaction rate (β); however, it is reduced with greater micropolar material parameter (s) and viscosity ratio (λ). Axial mean concentration peaks are reduced in magnitude and displaced further along with the arterial geometry with greater micropolar material parameter values, whereas the opposite effect is induced with greater micropolar coupling number. The study is relevant to hemorheology, diseased arteries and coagulating hemodynamics and may help physiologists in furnishing a more refined understanding of diffusion processes in cardiovascular hydrodynamics.



中文翻译:

具有整体反应的两流体(微极性-牛顿)血流中不稳定溶质分散的数学模型

建立了数学模型,用于在恒定的轴向压力梯度下,对刚性动脉中的反应性扩散物质(例如氧气)进行血流动力学传输,并与流动的血液进行一阶化学反应。部署了两种流体模型,其中将核心区域模拟为Eringen微极性流体,并将吞并核心(即边界附近)的血浆层分析为牛顿粘性流体。提出了速度和微旋转曲线的封闭形式解,并针对浓度场采用了Gill分解方法。得出了分散系数,平均浓度和横向浓度的表达式。观察到横向浓度随着微极性偶合数(N)和反应速率(β)的增加而增强。); 然而,随着更大的微极性材料参数(s)和粘度比(λ)而降低了它。轴向平均浓度峰的大小减小,并且随着动脉几何形状的变化而具有更大的微极性材料参数值,而相反的效果则随着更大的微极性耦合数而产生。这项研究与血液流变学,动脉病变和凝血动力学有关,可以帮助生理学家更深入地了解心血管流体动力学中的扩散过程。

更新日期:2021-02-09
down
wechat
bug