当前位置: X-MOL 学术AIAA J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Supersonic Turbulent Boundary-Layer Separation Control Using a Morphing Surface
AIAA Journal ( IF 2.5 ) Pub Date : 2021-02-08 , DOI: 10.2514/1.j059773
Vilas J. Shinde 1 , Datta V. Gaitonde 1 , Jack J. McNamara 1
Affiliation  

Separated flows arising due to shock-wave/turbulent boundary-layer interactions can cause problematic low-frequency unsteadiness with potentially severe structural response. High-fidelity large-eddy simulations are employed to examine surface morphing as a way to reduce the size of the separation region, and thus favorably alter the unsteadiness characteristics. The configuration considers a turbulent Mach 2.7 flow at a Reynolds number of Reδin=54,600 subjected to an impinging shock system with a pressure ratio of p3/p1=3, which results in separation and the presence of structurally relevant low-frequency unsteadiness. The control surface, centered about the shock impingement location and extending over the separation region, is allowed to deform under material property-based realizability constraints until an asymptotic state is achieved. The criterion for deformation uses a measure proportional to the directional surface shear stress. At an asymptotic state, the deformed surface reveals a shape consistent with aerostructural optimization and a maximum height of 0.32δin. Control mitigates the sharp initial pressure gradient of the uncontrolled flow to delay and reduce separation extent (by 50%) with diminution of low-frequency content and turbulent kinetic energy. Modal decomposition highlights these effects in the energy content of the prominent modes. Morphing may thus provide a means to adjust the local surface deflection in a manner that reduces some of the problems associated with turbulent separation.



中文翻译:

使用变形表面的超音速湍流边界层分离控制

由于冲击波/湍流边界层相互作用而产生的分离流动会引起问题性的低频不稳定,并可能产生严重的结构响应。高保真大涡流模拟用于检查表面变形,以减小分离区域的大小,从而有利地改变不稳定的特征。该配置考虑了雷诺数为的湍流Mach 2.7流[RËδ=54600 承受冲击比为的冲击系统 p3/p1个=3,导致分离并存在结构上相关的低频不稳定。以冲击冲击位置为中心并在分离区域上延伸的控制表面在基于材料属性的可实现性约束下变形,直到达到渐近状态。变形标准使用与定向表面剪切应力成比例的量度。在渐近状态下,变形表面呈现出与航空结构优化一致的形状,最大高度为0.32δ。控制通过减小低频成分和湍动能来减轻不受控制的流动的尖锐初始压力梯度,从而延迟并减小分离程度(降低50%)。模态分解突出了突出模态的能量含量中的这些效应。因此,变形可以提供一种以减少与湍流分离有关的一些问题的方式来调节局部表面挠度的装置。

更新日期:2021-02-08
down
wechat
bug