当前位置: X-MOL 学术Aut. Control Comp. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Linear Interpolation on a Euclidean Ball in ℝ n
Automatic Control and Computer Sciences Pub Date : 2021-02-08 , DOI: 10.3103/s0146411620070172
M. V. Nevskii , A. Yu. Ukhalov

Abstract—

For \({{x}^{{(0)}}} \in {{\mathbb{R}}^{n}},R > 0\), by \(B = B({{x}^{{(0)}}};R)\) we denote the Euclidean ball in \({{\mathbb{R}}^{n}}\) given by the inequality \(\left\| {x - {{x}^{{(0)}}}} \right\| \leqslant R\), \(\left\| x \right\|: = \mathop {\left( {\sum\nolimits_{i = 1}^n x_{i}^{2}} \right)}\nolimits^{1/2} \). Put \({{B}_{n}}: = B(0,1)\). We mean by \(C(B)\) the space of continuous functions \(f:B \to \mathbb{R}\) with the norm \({{\left\| f \right\|}_{{C(B)}}}: = ma{{x}_{{x \in B}}}\left| {f(x)} \right|\) and by \({{\Pi }_{1}}\left( {{{\mathbb{R}}^{n}}} \right)\) the set of polynomials in \(n\) variables of degree \( \leqslant 1\), i. e., linear functions on \({{\mathbb{R}}^{n}}\). Let \({{x}^{{(1)}}}, \ldots ,{{x}^{{(n + 1)}}}\) be the vertices of \(n\)-dimensional nondegenerate simplex \(S \subset B\). The interpolation projector \(P:C(B) \to {{\Pi }_{1}}({{\mathbb{R}}^{n}})\) corresponding to \(S\) is defined by the equalities \(Pf\left( {{{x}^{{(j)}}}} \right) = f\left( {{{x}^{{\left( j \right)}}}} \right)\) from C(B) into C(B). Let us define \({{\theta }_{n}}(B)\) as minimal value of \({{\left\| P \right\|}_{B}}\) under the condition \({{x}^{{(j)}}} \in B\). In the paper we obtain the formula to compute \({{\left\| P \right\|}_{B}}\) making use of \({{x}^{{(0)}}}\), \(R\), and coefficients of basic Lagrange polynomials of \(S\). In more details we study the case when \(S\) is a regular simplex inscribed into \({{B}_{n}}\). In this situation, we prove that \({{\left\| P \right\|}_{{{{B}_{n}}}}} = \max\{ \psi (a),\psi (a + 1)\} ,\) where \(\psi (t) = \tfrac{{2\sqrt n }}{{n + 1}}{{(t(n + 1 - t))}^{{1/2}}} + \left| {1 - \tfrac{{2t}}{{n + 1}}} \right|\) \((0 \leqslant t \leqslant n + 1)\) and integer \(a\) has the form \(a = \left\lfloor {\tfrac{{n + 1}}{2} - \tfrac{{\sqrt {n + 1} }}{2}} \right\rfloor .\) For this projector, \(\sqrt n \leqslant {{\left\| P \right\|}_{{{{B}_{n}}}}} \leqslant \sqrt {n + 1} \). The equality \({{\left\| P \right\|}_{{{{B}_{n}}}}} = \sqrt {n + 1} \) takes place if and only if \(\sqrt {n + 1} \) is an integer number. We give the precise values of \({{\theta }_{n}}({{B}_{n}})\) for \(1 \leqslant n \leqslant 4\). To supplement theoretical results we present computational data. We also discuss some other questions concerning interpolation on a Euclidean ball.



中文翻译:

ℝn中欧式球上的线性插值

摘要-

对于\({{x} ^ {{((0)}}}} \ in {{\ mathbb {R}} ^ {n}},R> 0 \),通过\(B = B({{x} ^ {{(0)}}}; R } \)表示由不等式\(\ left \ | {x-{ }给出的\({{\ mathbb {R}} ^ {n}} \)中的欧几里得球{x} ^ {{((0)}}}} \ right \ | \ leqslant R \)\(\ left \ | x \ right \ |:= \ mathop {\ left({\ sum \ nolimits_ {i = 1} ^ n x_ {i} ^ {2}} \ right)} \ nolimits ^ {1/2} \)。放\({{B} _ {n}}:= B(0,1)\)。我们用\(C(B)\)表示连续函数\(f:B \ to \ mathbb {R} \)的空间,其范数为\({{\ left \ | f \ right \ |} __ {{ C(B)}}}:= ma {{x} _ {{x \ in B}}} \ left | {f(x)} \ right | \)\({{\ Pi} _ {1 }} \ left({{{\ mathbb {R}} ^ {n}}} \ right)\)\(n \)\(\ leqslant 1 \)变量中的多项式集,即\({{\ mathbb {R}} ^ {n}} \)上的线性函数。令\({{x} ^ {{((1)}}},\ ldots,{{x} ^ {{(n + 1)}}} \)\(n \)维非退化单纯形的顶点\(S \ subset B \)。对应于\(S \)的插值投影仪\(P:C(B)\ to {{\ Pi __1}}({{\ mathbb {R}} ^ {n}})\)由等于\(Pf \ left({{{x} ^ {{{(j)}}}} \ right)= f \ left({{{x} ^ {{\ left(j \ right)}}}}} \ right)\)从C(B)到C(B)。让我们将\({{\ theta} _ {n}}(B)\)定义为\({{\ left \ | P \ right \ |} _ {B}} \)的最小值在条件\({{x} ^ {{{(j)}}} \ in B \)中。在本文中,我们获得了使用\({{x} ^ {{{(0)}}} \)来计算\({{\ left \ | P \ right \ |} _ {B}} \)的公式\(R \)\(S \)的基本拉格朗日多项式的系数。更详细地讲,我们研究\(S \)是刻在\({{B} _ {n}} \)\中的常规单纯形的情况。在这种情况下,我们证明\({{\ left \ | P \ right \ |} _ {{{{{B} _ {n}}}}}} = \ max \ {\ psi(a),\ psi( a + 1)\},\)其中\(\ psi(t)= \ tfrac {{2 \ sqrt n}} {{n + 1}} {{(t(n + 1-t))} ^ { {1/2}}} + \ left | {1-\ tfrac {{2t}} {{n + 1}}} \ right | \) \((0 \ leqslant t \ leqslant n +1)\)和整数\(a \)的格式为\(a = \ left \ lfloor {\ tfrac {{n + 1}} {2}-\ tfrac {{\ sqrt {n + 1}}} {2}} \ right \ rfloor。\)对于此投影机,\(\ sqrt n \ leqslant {{\ left \ | P \ right \ |} _ {{{{{{B} _ {n}}}}}} \ leqslant \ sqrt {n + 1 } \)。等式\({{\ left \ | P \ right \ |} _ {{{{{B} _ {n}}}}} = \ sqrt {n + 1} \)仅在\(\ sqrt {n + 1} \)是一个整数。我们给出的精确值\({{\ THETA} _ {N}}({{B} _ {N}})\)\(1 \ leqslantÑ\ leqslant 4 \)。为了补充理论结果,我们提出了计算数据。我们还将讨论有关欧几里得球上插值的其他一些问题。

更新日期:2021-02-08
down
wechat
bug