当前位置: X-MOL 学术J. Supercomput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Implementation of a high-accuracy phase unwrapping algorithm using parallel-hybrid programming approach for displacement sensing using self-mixing interferometry
The Journal of Supercomputing ( IF 3.3 ) Pub Date : 2021-02-08 , DOI: 10.1007/s11227-021-03634-6
Tassadaq Hussain , Saqib Amin , Usman Zabit , Eduard Ayguadé

Phase unwrapping is an integral part of multiple algorithms with diverse applications. Detailed phase unwrapping is also necessary for achieving high-accuracy metric sensing using laser feedback-based self-mixing interferometry (SMI). Among SMI specific phase unwrapping approaches, a technique called Improved Phase Unwrapping Method (IPUM) provides the highest accuracy. However, due to its complex, sequential, and compute-intensive nature, this method requires a high-performance computing architecture, capable of scalable parallel processing so that such a high-accuracy algorithm can be used for high-bandwidth sensing applications. In this work, the existing sequential IPUM C program is parallelized by using hybrid OpenMP/MPI (Open Multi-Processing/Message Passing Interface) parallel programming models and tested on Barcelona Supercomputing Center Nord-III Supercomputer. The computational performance of the proposed parallel-hybrid IPUM algorithm is compared with existing IPUM sequential code by executing multi-core and uni-core processor architecture, respectively. While comparing the performance of sequential IPUM with the parallel-hybrid IPUM algorithm on 16 nodes of Nord-III supercomputer, the results show that the parallel-hybrid algorithm gets 345.9x times performance improvement as compared to IPUM’s standard, sequential implementation on a single node system. The results show that the parallel-hybrid version of IPUM gives a scalable performance for different target velocities and a different number of processing cores.



中文翻译:

利用并行混合编程方法实现高精度相位展开算法,用于自混合干涉测量的位移传感

相位展开是具有多种应用程序的多种算法的组成部分。使用基于激光反馈的自混合干涉仪(SMI)来实现高精度的度量传感,也需要详细的相位展开。在特定于SMI的相位解缠方法中,一种称为改进相位解缠方法(IPUM)的技术可提供最高的精度。但是,由于其复杂,顺序和计算密集的特性,该方法需要一种高性能的计算体系结构,该体系结构能够进行可伸缩的并行处理,因此这种高精度算法可用于高带宽传感应用。在这项工作中 现有的顺序IPUM C程序使用混合的OpenMP / MPI(开放式多处理/消息传递接口)并行编程模型进行并行化,并在Barcelona超级计算中心Nord-III超级计算机上进行了测试。通过分别执行多核和单核处理器体系结构,将所提出的并行混合IPUM算法的计算性能与现有IPUM顺序代码进行比较。在对Nord-III超级计算机的16个节点上的顺序IPUM和并行混合IPUM算法的性能进行比较时,结果表明,与IPUM的标准,在单个节点上顺序执行相比,并行混合算法的性能提高了345.9倍。系统。

更新日期:2021-02-08
down
wechat
bug