当前位置: X-MOL 学术Int. J. Mater. Form. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel three-dimensional multi-objective numerical modeling for hot strip tandem rolling
International Journal of Material Forming ( IF 2.4 ) Pub Date : 2021-02-08 , DOI: 10.1007/s12289-021-01614-y
Lianjie Li , Jianxin Li , Haibo Xie , Hongqiang Liu , Li Sun , Tianwu Liu , Xu Liu , Kexin Shi , Zhengyi Jiang

During the hot strip tandem rolling (HSTR) process, the strip is compressed and elongated continuously, causing significant elastic deformation of rolls. At the same time, the strip temperature undergoes rapid increase and decrease, and distributes unevenly along the strip width direction. Elastic deformation of rolls and strip temperature variations have a significant effect on strip deformation, resulting in various strip shape. In this study, a novel three-dimensional (3D) coupled thermal-mechanical elastic-plastic finite element (FE) model for the HSTR is proposed based on the segmentation modeling strategy, where the finish mill is divided into several sub-models. The data transfer technology is developed to integrate the sub-models into a whole model via transferring the strip crown and temperature among the sub-models. Furthermore, the active and deactive element method, rigid pushing technology, and element remesh are also used to improve the calculation efficiency and accuracy of the model. Multi-objective parameters, such as strip temperature, strip crown, elastic deformation of roll stacks, and rolling force during the HSTR process are studied systematically using the developed FE model. The results show that the calculated strip temperature and strip crown after F7 agree well with the measured values, and the relative error between calculated and measured rolling force at each stand is less than 10%. This work offers a fresh perspective on the HSTR simulation.



中文翻译:

带钢热连轧的新型三维多目标数值模拟

在带钢热连轧(HSTR)过程中,带钢被连续压缩和拉长,从而引起轧辊明显的弹性变形。同时,带材温度快速升高和降低,并沿带材宽度方向分布不均匀。轧辊的弹性变形和带材的温度变化对带材的变形有重要影响,从而导致各种带材形状。在这项研究中,基于分段建模策略,提出了一种用于HSTR的新型三维(3D)耦合热机械弹塑性有限元(FE)模型,该模型将精轧机分为几个子模型。通过在子模型之间传输带材凸厚和温度,开发了数据传输技术以将子模型集成到整个模型中。此外,主动和被动元素方法,刚性推挤技术和元素重击也可用于提高模型的计算效率和准确性。利用已开发的有限元模型,系统地研究了多目标参数,例如带钢温度,带材凸厚,轧辊堆的弹性变形以及HSTR过程中的轧制力。结果表明,计算得出的带钢温度和F7后的带材凸厚度与实测值吻合良好,每个机架的轧制力计算值与实测值之间的相对误差小于10%。这项工作为HSTR仿真提供了新的视角。利用已开发的有限元模型,系统地研究了钢带凸厚,轧辊堆的弹性变形以及HSTR过程中的轧制力。结果表明,计算得出的带钢温度和F7后的带材凸厚度与实测值吻合良好,每个机架的轧制力计算值与实测值之间的相对误差小于10%。这项工作为HSTR仿真提供了新的视角。利用已开发的有限元模型,系统地研究了钢带凸厚,轧辊堆的弹性变形以及HSTR过程中的轧制力。结果表明,计算得出的带钢温度和F7后的带材凸厚度与实测值吻合良好,每个机架的轧制力计算值与实测值之间的相对误差小于10%。这项工作为HSTR仿真提供了新的视角。

更新日期:2021-02-08
down
wechat
bug