当前位置: X-MOL 学术J. Adv. Ceram. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural evolution of plasma sprayed amorphous Li 4 Ti 5 O 12 electrode and ceramic/polymer composite electrolyte during electrochemical cycle of quasi-solid-state lithium battery
Journal of Advanced Ceramics ( IF 16.9 ) Pub Date : 2021-02-06 , DOI: 10.1007/s40145-020-0447-9
Xi Wu , Xinghua Liang , Xiaofeng Zhang , Lingxiao Lan , Suo Li , Qixin Gai

A quasi-solid-state lithium battery is assembled by plasma sprayed amorphous Li4Ti5O12 (LTO) electrode and ceramic/polymer composite electrolyte with a little liquid electrolyte (10 µL/cm2) to provide the outstanding electrochemical stability and better normal interface contact. Scanning Electron Microscope (SEM), Scanning Transmission Electron Microscopy (STEM), Transmission Electron Microscopy (TEM), and Energy Dispersive Spectrometer (EDS) were used to analyze the structural evolution and performance of plasma sprayed amorphous LTO electrode and ceramic/polymer composite electrolyte before and after electrochemical experiments. By comparing the electrochemical performance of the amorphous LTO electrode and the traditional LTO electrode, the electrochemical behavior of different electrodes is studied. The results show that plasma spraying can prepare an amorphous LTO electrode coating of about 8 µm. After 200 electrochemical cycles, the structure of the electrode evolved, and the inside of the electrode fractured and cracks expanded, because of recrystallization at the interface between the rich fluorine compounds and the amorphous LTO electrode. Similarly, the ceramic/polymer composite electrolyte has undergone structural evolution after 200 test cycles. The electrochemical cycle results show that the cycle stability, capacity retention rate, coulomb efficiency, and internal impedance of amorphous LTO electrode are better than traditional LTO electrode. This innovative and facile quasi-solid-state strategy is aimed to promote the intrinsic safety and stability of working lithium battery, shedding light on the development of next-generation high-performance solid-state lithium batteries.



中文翻译:

准固态锂电池电化学循环过程中等离子喷涂非晶Li 4 Ti 5 O 12电极和陶瓷/聚合物复合电解质的结构演变

准固态锂电池由等离子喷涂非晶Li 4 Ti 5 O 12(LTO)电极和陶瓷/聚合物复合电解质以及少量液体电解质(10 µL / cm 2)组装而成)提供出色的电化学稳定性和更好的常规界面接触。扫描电子显微镜(SEM),扫描透射电子显微镜(STEM),透射电子显微镜(TEM)和能量分散光谱仪(EDS)用于分析等离子喷涂非晶态LTO电极和陶瓷/聚合物复合电解质的结构演变和性能电化学实验前后。通过比较非晶态LTO电极和传统LTO电极的电化学性能,研究了不同电极的电化学行为。结果表明,等离子喷涂可以制备约8 µm的非晶态LTO电极涂层。经过200次电化学循环后,电极的结构发生了变化,由于在富氟化合物和非晶态LTO电极之间的界面上发生了再结晶,电极的内部破裂并扩展了裂纹。同样,陶瓷/聚合物复合电解质在200个测试循环后经历了结构演变。电化学循环结果表明,非晶态LTO电极的循环稳定性,容量保持率,库仑效率和内阻抗均优于传统的LTO电极。这种创新且灵活的准固态策略旨在促进工作锂电池的本质安全性和稳定性,从而为下一代高性能固态锂电池的发展提供了亮点。陶瓷/聚合物复合电解质在200个测试循环后经历了结构演变。电化学循环结果表明,非晶态LTO电极的循环稳定性,容量保持率,库仑效率和内阻抗均优于传统的LTO电极。这种创新且灵活的准固态策略旨在促进工作锂电池的本质安全性和稳定性,从而为下一代高性能固态锂电池的发展提供了亮点。陶瓷/聚合物复合电解质在200个测试循环后经历了结构演变。电化学循环结果表明,非晶态LTO电极的循环稳定性,容量保持率,库仑效率和内阻抗均优于传统的LTO电极。这种创新且灵活的准固态策略旨在促进工作锂电池的本质安全性和稳定性,从而为下一代高性能固态锂电池的发展提供了亮点。

更新日期:2021-02-07
down
wechat
bug