当前位置: X-MOL 学术Int. J. Numer. Anal. Methods Geomech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the implementation and validation of a three‐dimensional pressure‐dependent bounding surface plasticity model for soil nonlinear wave propagation and soil‐structure interaction analyses
International Journal for Numerical and Analytical Methods in Geomechanics ( IF 4 ) Pub Date : 2021-02-04 , DOI: 10.1002/nag.3194
Wenyang Zhang 1 , Keng‐Wit Lim 2 , S. Farid Ghahari 1 , Pedro Arduino 3 , Ertugrul Taciroglu 1
Affiliation  

Numerous experiments and prior analyses have confirmed that soil inelasticity, which is known to come into effect even at very low strain levels, can significantly affect site response and dynamic soil‐structure interaction (SSI) behavior. To date, only a few studies were able to consider multi‐axial wave propagation problems with appropriate models of soil nonlinearity. Most existing works are limited to either homogeneous soil configurations or equivalent linear soil models. The instances wherein soil nonlinearity is accurately considered have been confined to single element tests and one‐dimensional problems. In this study, an improved pressure‐dependent bounding surface plasticity soil model—with appropriate plastic strain rate direction definition and overshooting correction scheme—is implemented in Abaqus, and validated using recordings from both the Lotung borehole array and centrifuge test data on embedded flexible structures. The implemented model is capable of comprehensively reproducing complex soil behaviors, such as stiffness degradation, damping, dilatancy, and compaction while under a wide strain range, and under general loading conditions using only a few material parameters to be calibrated. Consequently, numerically predicted results are observed to be in better agreement with experimentally measured data, in comparison with linear and another plasticity model, which include accelerations, and bending and hoop strains along the walls of the specimen structures, for low‐ as well as high‐amplitude input motions.

中文翻译:

土壤非线性波传播和土-结构相互作用分析的三维压力依赖型边界塑性模型的实现与验证

许多实验和先前的分析已经证实,即使在非常低的应变水平下,土壤非弹性也会发生,它会显着影响场地响应和动态的土壤-结构相互作用(SSI)行为。迄今为止,只有少数研究能够使用适当的土壤非线性模型来考虑多轴波传播问题。现有的大多数工作仅限于均质土壤构造或等效线性土壤模型。准确考虑土壤非线性的实例仅限于单元素测试和一维问题。在这项研究中,在Abaqus中实施了改进的压力依赖型边界表面可塑性土壤模型-带有适当的塑性应变率方向定义和超调校正方案,并使用来自Lotung钻孔阵列的记录和嵌入式挠性结构上的离心机测试数据进行了验证。所实现的模型能够在很宽的应变范围内以及仅使用少量要校准的材料参数的情况下,全面再现复杂的土壤行为,例如刚度降低,阻尼,膨胀和压实。因此,与线性和另一个可塑性模型(包括加速度,沿试样结构的壁的弯曲和环向应变)相比,无论是低还是高,数值预测的结果都与实验测量的数据更好地吻合。振幅输入运动。所实现的模型能够在很宽的应变范围内以及仅使用少量要校准的材料参数的情况下,全面再现复杂的土壤行为,例如刚度降低,阻尼,膨胀和压实。因此,与线性和另一个可塑性模型(包括加速度,沿试样结构的壁的弯曲和环向应变)相比,无论是低还是高,数值预测的结果都与实验测量的数据更好地吻合。振幅输入运动。所实现的模型能够在很宽的应变范围内以及仅使用少量要校准的材料参数的情况下,全面再现复杂的土壤行为,例如刚度降低,阻尼,膨胀和压实。因此,与线性和另一个可塑性模型(包括加速度,沿试样结构的壁的弯曲和环向应变)相比,无论是低还是高,数值预测的结果都与实验测量的数据更好地吻合。振幅输入运动。
更新日期:2021-02-04
down
wechat
bug