当前位置: X-MOL 学术Int. J. Impact. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dust and atmospheric influence on plasma properties observed in light gas gun hypervelocity impact experiments
International Journal of Impact Engineering ( IF 5.1 ) Pub Date : 2021-02-05 , DOI: 10.1016/j.ijimpeng.2021.103833
Benjamin Estacio , Gil Shohet , Sean A.Q. Young , Isaac Matthews , Nicolas Lee , Sigrid Close

Plasma and associated radio frequency (RF) emission produced by hypervelocity impacts of dust and meteoroids are a source of scientific information on stellar dust populations and a potential hazard to spacecraft electrical systems. A previously unexplored aspect of these impacts is the influence that non-vaporized ejecta, or dust, can have on both the plasma and RF emission. Although initially neutral, this dust can gain a charge through collisions with the plasma potentially forming a dusty plasma. Characterizing dust-producing impacts allows for assessing the threat they pose to spacecraft. This paper investigates the influence that a 0.5 Torr background pressure and dust had on the plume evolution of ground-based hypervelocity impact experiments. The effects of material and target charge on dust production and dynamics were explored. Faraday cup plasma sensors were designed and built specifically for these experiments to capture the distribution of charge in the plume and record highly transient charged dust detections. We found that the background gas had a significant effect on the propagation and evolution of the impact plume, slowing the plume from its jetting velocity of 16 km/s down to 10 km/s leading to a Rayleigh-Taylor instability. Charged dust was confirmed by the Faraday cup measurements. Based on high-speed imagery, we observed that plasma was dragged along the trajectory of the expanding dust curtain. The measured signal from this dragged plasma lasted for 10 times longer than plasma that did not contain dust. Plasma with dust was highly negative with current densities measured by the plasma sensors of up to 0.1 A/m2 — 10 to 1000 times more dense than measured on sensors at other elevations — putting spacecraft electronics at greater risk of RF interference and electrical discharges.



中文翻译:

尘和大气对轻气枪超高速撞击实验中观察到的等离子体性能的影响

尘埃和流星体的超高速撞击所产生的等离子体和相关的射频(RF)辐射是有关恒星尘埃种群以及对航天器电气系统的潜在危害的科学信息的来源。这些影响的以前未曾探索过的方面是未汽化的喷射物或粉尘可能对等离子体和RF辐射产生的影响。尽管起初是中性的,但这种灰尘可以通过与等离子体碰撞而获得电荷,从而可能形成多尘的等离子体。表征产生尘埃的影响可以评估其对航天器的威胁。本文研究了0.5 Torr的背景压力和粉尘对地面超高速撞击实验羽流演变的影响。探索了材料和目标电荷对粉尘产生和动力学的影响。法拉第杯等离子体传感器专为这些实验而设计和制造,以捕获羽流中电荷的分布并记录高瞬态带电粉尘检测。我们发现,背景气体对撞击羽流的传播和演化具有显着影响,使羽流从其喷射速度的16 km / s减慢到10 km / s,从而导致瑞利-泰勒不稳定。通过法拉第杯测量确认带电灰尘。基于高速图像,我们观察到等离子体沿着膨胀的尘埃帘线的轨迹拖动。从拖曳的等离子体中测得的信号持续时间是不含尘埃的等离子体的10倍。带有尘土的等离子体高度负电,等离子体传感器测得的电流密度高达0.1 A / m 我们发现,背景气体对撞击羽流的传播和演化具有显着影响,使羽流从其喷射速度的16 km / s减慢到10 km / s,从而导致瑞利-泰勒不稳定。通过法拉第杯测量确认带电粉尘。基于高速图像,我们观察到等离子体沿着膨胀的尘埃帘线的轨迹拖动。从拖曳的等离子体中测得的信号持续时间是不含尘埃的等离子体的10倍。带有尘埃的等离子体高度为负,等离子体传感器测得的电流密度高达0.1 A / m 我们发现,背景气体对撞击羽流的传播和演化具有显着影响,使羽流从其喷射速度的16 km / s减慢到10 km / s,从而导致瑞利-泰勒不稳定。通过法拉第杯测量确认带电粉尘。基于高速图像,我们观察到等离子体沿着膨胀的尘埃帘线的轨迹拖动。从拖曳的等离子体中测得的信号持续时间是不含尘埃的等离子体的10倍。带有尘土的等离子体高度负电,等离子体传感器测得的电流密度高达0.1 A / m 通过法拉第杯测量确认带电粉尘。基于高速图像,我们观察到等离子体沿着膨胀的尘埃帘线的轨迹拖动。从拖曳的等离子体中测得的信号持续时间是不含尘埃的等离子体的10倍。带有尘土的等离子体高度负电,等离子体传感器测得的电流密度高达0.1 A / m 通过法拉第杯测量确认带电粉尘。基于高速图像,我们观察到等离子体沿着膨胀的尘埃帘线的轨迹拖动。从拖曳的等离子体中测得的信号持续时间是不含尘埃的等离子体的10倍。带有尘土的等离子体高度负电,等离子体传感器测得的电流密度高达0.1 A / m密度比在其他海拔高度的传感器测量的密度高2到10到1000倍-使航天器电子设备面临更大的RF干扰和放电风险。

更新日期:2021-02-18
down
wechat
bug