当前位置: X-MOL 学术J. Micromech. Microeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A dual-driven biomimetic microrobot based on optical and magnetic propulsion
Journal of Micromechanics and Microengineering ( IF 2.3 ) Pub Date : 2021-01-30 , DOI: 10.1088/1361-6439/abd8de
Wei Jiang , Guoyong Ye , Bangdao Chen , Hongzhong Liu

The microrobot, which can address the fuel depletion and wire limitation, has exhibited great potential in the fields of lab-on-chip devices, sensing and monitoring devices, and some biomedical applications. In this paper, a dual-driven wireless microrobot, which can harvest and convert external optical and magnetic energy into the kinetic energy, is described. The dual-driven microrobot is fabricated by using a rapid 3D printing technology. Au and Ni nanoparticles are deposited on the surface of the microrobot, responsible for the optical and magnetic propulsion modes, respectively. The strong infrared light absorption of Au can induce a thermal convection and thus propel the movement of the microrobot. Similarly, the magnetic gradient field exerted on the Ni nanoparticles is applied to enable the magnetic manipulation of the microrobot. The experimental results demonstrate that the applied magnetic field and laser beam can provide efficient interventions on the ‘start/stop’ states, the speed and direction of the movement as well as the position of the microrobot in a remotely controlled manner. We can manipulate the microrobot with both fine microrange motion adjustment and wide range movement control that cannot be achieved by using a single propulsion mode. Dynamic switching of the light driven mode and the magnetic propulsion mode are also presented, which indicates that the microrobot can overcome the strong viscous force and display efficient motions in fluids under each propulsion mode. Such dual-driven propulsion method offers a broad scope for designing smart micro-vehicles that can reconfigure their operation mode according to their mission and surrounding environments.



中文翻译:

基于光和磁推进的双驱动仿生微型机器人

可以解决燃料消耗和导线限制的微型机器人在芯片实验室设备,传感和监测设备以及某些生物医学应用领域中显示出巨大潜力。在本文中,描述了一种双驱动无线微型机器人,该机器人可以收集外部光能和磁能并将其转换为动能。双驱动微型机器人是使用快速3D打印技术制造的。Au和Ni纳米颗粒沉积在微型机器人的表面上,分别负责光学和磁推进模式。Au的强烈红外光吸收可引起热对流,从而推动微型机器人的运动。类似地,施加在Ni纳米颗粒上的磁场梯度场被用来实现微型机器人的磁操纵。实验结果表明,所施加的磁场和激光束可以以遥控方式对“开始/停止”状态,运动的速度和方向以及微型机器人的位置提供有效的干预。我们可以通过微微距运动调节和大范围运动控制来操纵微型机器人,这是使用单个推进模式无法实现的。还介绍了光驱动模式和磁推进模式的动态切换,这表明微型机器人可以克服强粘性力并在每种推进模式下显示流体中的有效运动。这种双驱动推进方法为设计可以根据其任务和周围环境重新配置其运行模式的智能微车提供了广阔的范围。

更新日期:2021-01-30
down
wechat
bug