当前位置: X-MOL 学术Astrophys. J. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Measurement of the Galactic Plane Mass Density from Binary Pulsar Accelerations
The Astrophysical Journal Letters ( IF 7.9 ) Pub Date : 2021-01-27 , DOI: 10.3847/2041-8213/abd635
Sukanya Chakrabarti 1, 2 , Philip Chang 3 , Michael T. Lam 2, 4 , Sarah J. Vigeland 3 , Alice C. Quillen 5
Affiliation  

We use compiled high-precision pulsar timing measurements to directly measure the Galactic acceleration of binary pulsars relative to the solar system barycenter. Given the vertical accelerations, we use the Poisson equation to derive the Oort limit, i.e., the total volume mass density in the Galactic mid-plane. Our best-fitting model gives an Oort limit of ${0.08}_{-0.02}^{0.05}{M}_{\odot }\,{\mathrm{pc}}^{-3}$, which is close to estimates from recent Jeans analyses. Given the accounting of the baryon budget from McKee et al., we obtain a local dark matter density of $-{0.004}_{-0.02}^{0.05}\,{M}_{\odot }\,{\mathrm{pc}}^{-3}$, which is slightly below other modern estimates but consistent within the current uncertainties of our method. The error bars are currently about five times larger than kinematical estimates, but should improve in the future for this novel dynamical method. We also constrain the oblateness of the potential, finding it consistent with that expected from the disk and inconsistent with a potential dominated by a spherical halo, as is appropriate for our sample that is within a ∼kpc of the Sun. We find that current measurements of binary pulsar accelerations lead to large uncertainties in the slope of the rotation curve. We give a fitting function for the vertical acceleration a z : a z = − α 1 z; ${\mathrm{log}}_{10}({\alpha }_{1}/{\mathrm{Gyr}}^{-2})={3.69}_{-0.12}^{0.19}$. By analyzing interacting simulations of the Milky Way, we find that large asymmetric variations in da z /dz as a function of vertical height may be a signature of sub-structure. We end by discussing the power of combining constraints from pulsar timing and high-precision radial velocity measurements toward lines-of-sight near pulsars, to test theories of gravity and constrain dark matter sub-structure.



中文翻译:

从双脉冲星加速度测量银河平面质量密度

我们使用经过编译的高精度脉冲星计时测量来直接测量双脉冲星相对于太阳系重心的银河加速度。给定垂直加速度,我们使用泊松方程推导出奥尔特极限,即银河中平面的总体积质量密度。我们的最佳拟合模型给出的奥尔特极限为${0.08}_{-0.02}^{0.05}{M}_{\odot }\,{\mathrm{pc}}^{-3}$,接近最近的 Jeans 分析的估计值。考虑到 McKee 等人的重子预算,我们获得了局部暗物质密度$-{0.004}_{-0.02}^{0.05}\,{M}_{\odot }\,{\mathrm{pc}}^{-3}$,这略低于其他现代估计,但在我们方法的当前不确定性范围内是一致的。误差线目前比运动学估计大五倍左右,但未来应该会改进这种新颖的动力学方法。我们还限制了电势的扁率,发现它与圆盘的预期一致,而与由球形晕主导的电势不一致,这适用于我们的样本,它位于太阳的 ∼kpc 内。我们发现双脉冲星加速度的当前测量导致旋转曲线斜率的很大不确定性。我们给出垂直加速度a z的拟合函数:a z = − α 1 z ${\mathrm{log}}_{10}({\alpha }_{1}/{\mathrm{Gyr}}^{-2})={3.69}_{-0.12}^{0.19}$. 通过分析银河系的相互作用模拟,我们发现作为垂直高度函数的da z / dz 的大不对称变化可能是子结构的特征。我们最后讨论了结合脉冲星计时和高精度径向速度测量对脉冲星附近视线的约束的力量,以测试重力理论和约束暗物质子结构。

更新日期:2021-01-27
down
wechat
bug