当前位置: X-MOL 学术APL Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Micro-coil probes for magnetic intracortical neural stimulation: Trade-offs in materials and design
APL Materials ( IF 6.1 ) Pub Date : 2021-01-12 , DOI: 10.1063/5.0023486
Krishnan Thyagarajan 1 , Rene A. Lujan 1 , Qian Wang 1 , JengPing Lu 1 , Sivkheng Kor 1 , Bruce Kakimoto 1 , Norine Chang 1 , Julie A. Bert 1
Affiliation  

Neural probes for intracortical neuromodulation in the brain have advanced with the developments in micro- and nanofabrication technologies. Most of these technologies for the intracortical stimulation have relied on the direct electrical stimulation via electrodes or arrays of electrodes. Generating electric fields using time-varying magnetic fields is a more recent neuromodulation technique that has proven to be more specifically effective for the intracortical stimulation. Additionally, current-actuated coils require no conductive contact with tissues and enable precise tailoring of magnetic fields, which are unaffected by the non-magnetic nature of the biological tissue and encapsulation layers. The material and design parameter space for such micro-coil fabrication can be optimized and tailored to deliver the ideal performance depending on the parameters needed for operation. In this work, we review the key requirements for implantable microcoils including the probe structure and material properties and discuss their characteristics and related challenges for the applications in intracortical neuromodulation.

中文翻译:

用于磁性皮层内神经刺激的微线圈探针:材料和设计的权衡

随着微和纳米加工技术的发展,用于大脑皮质内神经调节的神经探针已经发展。这些用于皮层内刺激的技术大多数依赖于经由电极或电极阵列的直接电刺激。使用时变磁场产生电场是一种最新的神经调节技术,已被证明对皮层内刺激更有效。另外,电流驱动的线圈不需要与组织导电接触,并且能够精确地定制磁场,而不受生物组织和包封层的非磁性的影响。可以优化和定制用于这种微线圈制造的材料和设计参数空间,以根据操作所需的参数提供理想的性能。在这项工作中,我们审查了对植入式微线圈的关键要求,包括探针的结构和材料特性,并讨论了它们的特性以及在皮层内神经调节中的应用面临的挑战。
更新日期:2021-01-29
down
wechat
bug