当前位置: X-MOL 学术Bull. Earthquake Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonlinear pile-head macro-element for the seismic analysis of structures on flexible piles
Bulletin of Earthquake Engineering ( IF 4.6 ) Pub Date : 2021-01-29 , DOI: 10.1007/s10518-020-01034-4
António A. Correia , Alain Pecker

Performance-based design (PBD) procedures require accurate estimates of both maximum and residual displacements in structural systems. Macro-element models are already proven tools for designing structures on shallow foundations according to PBD, since they represent a very cost-effective solution in terms of balance between physical behaviour, simulation accuracy and computational cost. This work extends the macro-element approach to the analysis of laterally loaded pile-shafts and soil-pile-structure interaction. The lateral response of the entire soil-pile system to seismic actions is thus condensed at the pile-head, being represented by a zero-length element located at the base of the columns and subjected to the foundation input motion. The macro-element model is presented, based on the three fundamental features of the response of laterally loaded piles: initial elastic behaviour, gap opening/closure effects and failure conditions. These three characteristic behaviours are all made compatible by using an inelastic model which accounts for the evolution from initial nonlinear elastic behaviour to full plastic flow at failure. Such inelastic model is based on a bounding surface plasticity theory formulation that ensures a smooth transition from the initial elastic pile-head response up to nonlinear behaviour and plastic mechanism formation. In order to validate the macro-element, its response is favourably compared with numerical results from advanced simulations of pile lateral behaviour and with load tests on real piles.



中文翻译:

用于柔性桩结构地震分析的非线性桩头宏单元

基于性能的设计(PBD)程序需要对结构系统中的最大位移和残余位移进行准确的估算。宏观元素模型已被证明是根据PBD设计浅层基础结构的可靠工具,因为它们在物理性能,模拟精度和计算成本之间取得了平衡,是一种非常经济高效的解决方案。这项工作将宏观单元方法扩展到侧向受力桩桩和土-桩-结构相互作用的分析中。因此,整个土桩系统对地震作用的横向响应在桩头处凝结,由位于柱根处并经受基础输入运动的零长单元表示。提出了宏观要素模型,基于侧向受力桩响应的三个基本特征:初始弹性行为,缝隙的开/关效果和破坏条件。通过使用非弹性模型可以使这三个特征行为兼容,该模型考虑了从初始非线性弹性行为到破坏时塑性流动的演变。这种非弹性模型基于边界表面可塑性理论公式,可确保从初始弹性桩头响应到非线性行为和塑性机制形成的平稳过渡。为了验证宏单元,它的响应与先进的桩侧向模拟结果和真实桩的载荷试验的数值结果进行了比较。通过使用非弹性模型可以使这三个特征行为兼容,该模型考虑了从初始非线性弹性行为到破坏时塑性流动的演变。这种非弹性模型基于边界表面可塑性理论公式,可确保从初始弹性桩头响应到非线性行为和塑性机制形成的平稳过渡。为了验证宏单元,它的响应与先进的桩侧向模拟结果和真实桩的载荷试验的数值结果进行了比较。通过使用非弹性模型可以使这三个特征行为兼容,该模型考虑了从初始非线性弹性行为到破坏时塑性流动的演变。这种非弹性模型基于边界表面可塑性理论公式,可确保从初始弹性桩头响应到非线性行为和塑性机制形成的平稳过渡。为了验证宏单元,它的响应与先进的桩侧向模拟结果和真实桩的载荷试验的数值结果进行了比较。这种非弹性模型基于边界表面可塑性理论公式,可确保从初始弹性桩头响应到非线性行为和塑性机制形成的平稳过渡。为了验证宏单元,可以将其响应与桩侧向行为的高级模拟的数值结果以及真实桩的载荷测试进行比较。这种非弹性模型基于边界表面可塑性理论公式,可确保从初始弹性桩头响应到非线性行为和塑性机制形成的平稳过渡。为了验证宏单元,它的响应与先进的桩侧向模拟结果和真实桩的载荷试验的数值结果进行了比较。

更新日期:2021-01-29
down
wechat
bug