当前位置: X-MOL 学术Numer. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bulk-surface virtual element method for systems of PDEs in two-space dimensions
Numerische Mathematik ( IF 2.1 ) Pub Date : 2021-01-28 , DOI: 10.1007/s00211-020-01167-3
Massimo Frittelli , Anotida Madzvamuse , Ivonne Sgura

In this paper we consider a coupled bulk-surface PDE in two space dimensions. The model consists of a PDE in the bulk that is coupled to another PDE on the surface through general nonlinear boundary conditions. For such a system we propose a novel method, based on coupling a virtual element method (Beirão Da Veiga et al. in Math Models Methods Appl Sci 23(01):199–214, 2013. https://doi.org/10.1051/m2an/2013138) in the bulk domain to a surface finite element method (Dziuk and Elliott in Acta Numer 22:289–396, 2013. https://doi.org/10.1017/s0962492913000056) on the surface. The proposed method, which we coin the bulk-surface virtual element method includes, as a special case, the bulk-surface finite element method (BSFEM) on triangular meshes (Madzvamuse and Chung in Finite Elem Anal Des 108:9–21, 2016. https://doi.org/10.1016/j.finel.2015.09.002). The method exhibits second-order convergence in space, provided the exact solution is \(H^{2+1/4}\) in the bulk and \(H^2\) on the surface, where the additional \(\frac{1}{4}\) is required only in the simultaneous presence of surface curvature and non-triangular elements. Two novel techniques introduced in our analysis are (i) an \(L^2\)-preserving inverse trace operator for the analysis of boundary conditions and (ii) the Sobolev extension as a replacement of the lifting operator (Elliott and Ranner in IMA J Num Anal 33(2):377–402, 2013. https://doi.org/10.1093/imanum/drs022) for sufficiently smooth exact solutions. The generality of the polygonal mesh can be exploited to optimize the computational time of matrix assembly. The method takes an optimised matrix-vector form that also simplifies the known special case of BSFEM on triangular meshes (Madzvamuse and Chung 2016). Three numerical examples illustrate our findings.



中文翻译:

二维二维偏微分方程系统的体表面虚元法

在本文中,我们考虑了二维空间中的耦合体表PDE。该模型由本体中的一个PDE组成,该PDE通过一般的非线性边界条件耦合到表面上的另一个PDE。对于这样的系统,我们提出了一种基于耦合虚拟元素方法的新颖方法(BeirãoDa Veiga等人,Math Models Methods Appl Sci 23(01):199–214,2013年。https://doi.org/10.1051 / m2an / 2013138)到表面上的表面有限元方法(Dziuk and Elliott in Acta Numer 22:289-396,2013. https://doi.org/10.1017/s0962492913000056)。拟议的方法,我们将其称为体表面虚拟单元法作为一个特例,包括在三角形网格上的体表面有限元方法(BSFEM)(Madzvamuse和Chung in Finite Elem Anal Des 108:9–21,2016。https://doi.org/10.1016/j.finel (2015.09.002)。该方法表现出空间的二阶收敛性,条件是确切的解决方案是:本体中的\(H ^ {2 + 1/4} \)和表面上的\(H ^ 2 \),其中附加的\(\ frac {1} {4} \)仅在同时存在表面曲率和非三角形元素的情况下才需要。我们的分析中引入了两种新颖的技术:(i)保留\(L ^ 2 \)的逆跟踪算符用于边界条件的分析和(ii)Sobolev扩展作为起重操作员的替代品(Elliott和Ranner在IMA J Num Anal 33(2):377-402,2013. https://doi.org/10.1093/imanum/drs022中获得),以提供足够平滑的精确解决方案。可以利用多边形网格的通用性来优化矩阵装配的计算时间。该方法采用优化的矩阵向量形式,也简化了已知的三角网格上BSFEM的特殊情况(Madzvamuse和Chung 2016)。三个数值示例说明了我们的发现。

更新日期:2021-01-28
down
wechat
bug