当前位置: X-MOL 学术J. Bionic Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of a 3D Printed Bipedal Robot: Towards Humanoid Research Platform to Study Human Musculoskeletal Biomechanics
Journal of Bionic Engineering ( IF 4 ) Pub Date : 2021-01-28 , DOI: 10.1007/s42235-021-0010-6
Kunyang Wang , Lei Ren , Zhihui Qian , Jing Liu , Tao Geng , Luquan Ren

The objective of this study is to develop a bio robot with a high degree of biomechanical fidelity to the human musculoskeletal system in order to investigate the biomechanical principles underlying human walking. The robot was designed to possess identical biomechanical characteristics to the human body in terms of body segment properties, joint configurations and 3D musculoskeletal geometries. These design parameters were acquired based on the medical images, 3D musculoskeletal model and gait measurements of a healthy human subject. To satisfy all the design criteria simultaneously, metal 3D printing was used to construct the whole-body humanoid robot. Flexible artificial muscles were fabricated in accordance with the predefined 3D musculoskeletal geometries. A series of physical tests were conducted to demonstrate the capacity of the robot platform. The fabricated robot shows equivalent mechanical characteristics to the human body as originally designed. The results of the physical tests by systematically changing environmental conditions and body structures have successfully demonstrated the capability of the robot platform to investigate the structure-function interplay in the human musculoskeletal system and also its interaction with the environment during walking. This robot might provide a valuable and powerful physical platform towards studying human musculoskeletal biomechanics by generating new hypotheses and revealing new insights into human locomotion science.



中文翻译:

3D打印双足机器人的开发:面向类人动物研究平台的研究人体肌肉骨骼生物力学

这项研究的目的是开发一种对人的肌肉骨骼系统具有高度生物力学保真度的生物机器人,以研究人类行走的生物力学原理。该机器人的设计具有与人体相同的生物力学特性,包括人体节段特性,关节构型和3D肌肉骨骼几何形状。这些设计参数是基于医学图像,3D肌肉骨骼模型和健康人类受试者的步态测量值而获得的。为了同时满足所有设计标准,金属3D打印被用于构造全身人形机器人。根据预定义的3D肌肉骨骼几何形状制作了柔性人造肌肉。进行了一系列物理测试,以证明机器人平台的能力。所制造的机器人具有与最初设计的人体相同的机械特性。通过系统地改变环境条件和身体结构进行的物理测试结果已成功证明了该机器人平台具有研究人体肌肉骨骼系统中结构与功能相互作用以及行走过程中其与环境相互作用的能力。该机器人可以通过产生新的假设并揭示对人类运动科学的新见识,为研究人类肌肉骨骼生物力学提供一个有价值而强大的物理平台。通过系统地改变环境条件和身体结构进行的物理测试结果已成功证明了该机器人平台具有研究人体肌肉骨骼系统中结构与功能相互作用以及行走过程中其与环境相互作用的能力。该机器人可以通过产生新的假设并揭示对人类运动科学的新见识,为研究人类肌肉骨骼生物力学提供一个有价值而强大的物理平台。通过系统地改变环境条件和身体结构进行的物理测试结果已成功证明了该机器人平台具有研究人体肌肉骨骼系统中结构与功能相互作用以及行走过程中其与环境相互作用的能力。该机器人可以通过产生新的假设并揭示对人类运动科学的新见识,为研究人类肌肉骨骼生物力学提供一个有价值而强大的物理平台。

更新日期:2021-01-28
down
wechat
bug