当前位置: X-MOL 学术Contin. Mech. Thermodyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling of orientational polarization within the framework of extended micropolar theory
Continuum Mechanics and Thermodynamics ( IF 2.6 ) Pub Date : 2021-01-28 , DOI: 10.1007/s00161-021-00972-x
Elena N. Vilchevskaya , Wolfgang H. Müller

In this paper the process of polarization of transversally polarizable matter is investigated based on concepts from micropolar theory. The process is modeled as a structural change of a dielectric material. On the microscale it is assumed that it consists of rigid dipoles subjected to an external electric field, which leads to a certain degree of ordering. The ordering is limited, because it is counteracted by thermal motion, which favors stochastic orientation of the dipoles. An extended balance equation for the microinertia tensor is used to model these effects. This balance contains a production term. The constitutive equations for this term are split into two parts, one , which accounts for the orienting effect of the applied external electric field, and another one, which is used to represent chaotic thermal motion. Two relaxation times are used to characterize the impact of each term on the temporal development. In addition homogenization techniques are applied in order to determine the final state of polarization. The traditional homogenization is based on calculating the average effective length of polarized dipoles. In a non-traditional approach the inertia tensor of the rigid rods is homogenized. Both methods lead to similar results. The final states of polarization are then compared with the transient simulation. By doing so it becomes possible to link the relaxation times to the finally observed state of order, which in terms of the finally obtained polarization is a measurable quantity.



中文翻译:

在扩展微极理论框架内的定向极化建模

本文基于微极性理论的概念研究了横向可极化物质的极化过程。该过程被建模为介电材料的结构变化。在微观尺度上,假设它由经受外部电场的刚性偶极子组成,这导致一定程度的有序性。有序是有限的,因为它被热运动抵消,热运动有利于偶极子的随机定向。微惯性张量的扩展平衡方程用于模拟这些影响。该余额包含生产期限。该项的本构方程分为两部分,一是考虑外加电场的定向作用,另一是用来表示混沌热运动。使用两个松弛时间来表征每个术语对时间发展的影响。另外,采用均化技术以确定极化的最终状态。传统的均质化基于计算极化偶极子的平均有效长度。在非传统方法中,刚性杆的惯性张量是均匀的。两种方法均得出相似的结果。然后将极化的最终状态与瞬态仿真进行比较。通过这样做,可以将弛豫时间与最终观察到的有序状态相关联,就最终获得的极化而言,该有序状态是可测量的量。另外,采用均化技术以确定极化的最终状态。传统的均质化基于计算极化偶极子的平均有效长度。在非传统方法中,刚性杆的惯性张量是均匀的。两种方法均得出相似的结果。然后将极化的最终状态与瞬态仿真进行比较。通过这样做,可以将弛豫时间与最终观察到的有序状态相关联,就最终获得的极化而言,该有序状态是可测量的量。另外,采用均化技术以确定极化的最终状态。传统的均质化基于计算极化偶极子的平均有效长度。在非传统方法中,刚性杆的惯性张量是均匀的。两种方法均得出相似的结果。然后将极化的最终状态与瞬态仿真进行比较。通过这样做,可以将弛豫时间与最终观察到的有序状态相关联,就最终获得的极化而言,该有序状态是可测量的量。然后将极化的最终状态与瞬态仿真进行比较。通过这样做,可以将弛豫时间与最终观察到的有序状态相关联,就最终获得的极化而言,该有序状态是可测量的量。然后将极化的最终状态与瞬态仿真进行比较。通过这样做,可以将弛豫时间与最终观察到的有序状态相关联,就最终获得的极化而言,该有序状态是可测量的量。

更新日期:2021-01-28
down
wechat
bug