当前位置: X-MOL 学术Adv. Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fluid–structure interaction analysis of hemodynamics in different degrees of stenoses considering microcirculation function
Advances in Mechanical Engineering ( IF 2.1 ) Pub Date : 2021-01-26 , DOI: 10.1177/1687814021989012
Fan He 1 , Lu Hua 2 , Tingting Guo 2
Affiliation  

In developed countries, stenosis is the main cause of death. To investigate hemodynamics within different degrees of stenoses, a stenosis model incorporating fluid–structure interaction and microcirculation function is used in this paper. Microcirculation is treated as a seepage outlet boundary condition. Compliant arterial wall is considered. Numerical simulation based on fluid–structure interaction is performed using finite element method. Our results indicate that (i) the increasing degree of stenosis makes the pressure drop increase, and (ii) the wall shear stress and the velocity in the artery zone may be more sensitive than the pressure with the increase of percentage stenosis, and (iii) there are higher wall shear stress and flow velocity in the post-stenosis region of severer stenosis. This work contributes to understand hemodynamics for different degrees of stenoses and it provides detailed information for stenosis and microcirculation function.



中文翻译:

考虑微循环功能的不同狭窄程度血液动力学的流固耦合分析

在发达国家,狭窄是主要的死亡原因。为了研究不同程度狭窄的血液动力学,本文使用了一种将流体-结构相互作用和微循环功能结合在一起的狭窄模型。微循环被视为渗流出口边界条件。考虑顺应性动脉壁。基于流固耦合的数值模拟是使用有限元方法进行的。我们的结果表明:(i)狭窄程度的增加使压力下降增加;(ii)随着狭窄百分比的增加,壁切应力和动脉区域的速度可能比压力更敏感,并且(iii在狭窄程度更高的狭窄后区域,壁切应力和流速更高。

更新日期:2021-01-27
down
wechat
bug