当前位置: X-MOL 学术Cryogenics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetothermal properties and magnetocaloric effect in ErFe2 compound
Cryogenics ( IF 2.1 ) Pub Date : 2021-01-27 , DOI: 10.1016/j.cryogenics.2020.103229
Rana Hesham , M. Abdel Aziz , Sherif Yehia , A.A. Ghani

Magneto-thermal properties and magnetocaloric effect of ErFe2 have been studied. Molecular field theory has been applied on ErFe2 to calculate the magnetization and the magnetic contribution to the heat capacity and entropy. Our calculation shows that ErFe2 is a ferrimagnetic compound with a compensation temperature of around 475 K and a Curie temperature of 596 K. Applying magnetic field to ErFe2 induces canting in moments of the Er sublattice. Density functional theory, as implemented in Wien2k code, was used to evaluate the density of states at Fermi energy to calculate the electronic contribution of heat capacity and entropy. We used available values of the shear and bulk moduli to evaluate the Debye temperature in order to calculate the lattice contribution to the heat capacity and entropy. We calculated the magnetocaloric quantities, namely isothermal magnetic entropy change ΔSmiso and adiabatic temperature change ΔTad, for magnetic fields up to 6 T and temperatures up to 800 K. For an applied field change of 6 T, ΔSmiso was found to be ≈0.23 J/mole K, while the maximum inverse magnetocaloric effect was found to be 0.13 J/mole K. The maximum adiabatic change |ΔTad|maxis ≈ 0.5 K per Tesla.



中文翻译:

磁热性能和磁热效应。 Fe铁2 复合

磁热性质和磁热效应。 Ë[RFË2已经研究过了。分子场论已被应用于Ë[RFË2计算磁化强度和磁性对热容量和熵的贡献。我们的计算表明Ë[RFË2 是一种铁磁化合物,补偿温度约为475 K,居里温度为596K。 Ë[RFË2在Er亚晶格的瞬间引起倾斜。使用在Wien2k代码中实现的密度泛函理论来评估费米能量下的状态密度,以计算热容量和熵的电子贡献。为了计算晶格对热容和熵的贡献,我们使用了剪切模量和体积模量的可用值来评估德拜温度。我们计算了磁热量,即等温磁熵变Δ小号一世sØ 和绝热温度变化ΔŤ一个d,对于最高6 T的磁场和最高800 K的温度。对于6 T的外加磁场变化, Δ小号一世sØ 被发现≈0.23J / mol K,而最大逆磁热效应被发现是 0.13 J /摩尔K。最大绝热变化 |ΔŤ一个d|一个X一世s 每个特斯拉≈0.5 K

更新日期:2021-02-05
down
wechat
bug